


Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
APR 2008 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2008 to 00-00-2008  

4. TITLE AND SUBTITLE 
CrossTalk: The Journal of Defense Software Engineering. Volume 21,
Number 4, April 2008 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
OO-ALC/MASE,6022 Fir Ave,Hill AFB,UT,84056-5820 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

32 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



    

2 CROSSTALK The Journal of Defense Software Engineering April 2008

4

7

14

19

23

27

Software Tracking:The Last Defense Against Failure 
This article concentrates on four worst practices and the factors that most
often lead to failure and litigation and gives advice on how to avoid them.
by Capers Jones

Does Project Performance Stability Exist? A
Re-examination of CPI and Evaluation of SPI(t) Stability
This article investigates whether the SPI(t) exhibits similar stability
characteristics to those extensively reported for the Cost Performance Index
in Earned Value Management.
by Kym Henderson and Dr. Ofer Zwikael

Schedule Adherence:A Useful Measure for Project
Management 
This article  utilizes the new practice of Earned Schedule to discuss a
proposed measure for further enhancing the practice of Earned Value
Management.
by Walt Lipke

A Review of Boundary Value Analysis Techniques
This article reviews Boundary Value Analysis, a functional testing
methodology that can assist in the identification of an effective set of tests.
by Dr. David J. Coe

VoIP Softphones
This article provides a description of a Voice over Internet Protocol
Softphone and how it operates.
by David Premeaux

Truth and Confidence: Some of the Realities of Software
Project Estimation
This article explores an alternative view of both software and project
estimation and concludes that the process of estimation could be much
more valuable than we make it.
by Phillip G. Armour

PrProject oject TTrrackingacking

SoftwSoftwaarree EngineerEngineeringing TTechnolechnologogyy

3
12
18
22

30
31

D eD e p ap a rr t m e n t st m e n t s

From the Sponsor

Coming Events

Call for Articles

CrossTalk Feedback

SSTC 2008 

BackTalk

Cover Design by
Kent Bingham

ON THE COVER

Additional art services
provided by Janna Jensen

CrossTalk
CO-SPONSORS:

DOD-CIO

OSD (AT&L)

NAVAIR

76 SMXG

309 SMXG

DHS

STAFF:
MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

The Honorable John Grimes

Kristen Baldwin

Jeff Schwalb

Phil Perkins

Karl Rogers

Joe Jarzombek

Brent Baxter

Elizabeth Starrett

Ken Davies

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555
crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Department of
Defense Chief Information Office (DoD-CIO); the
Office of the Secretary of Defense (OSD) Acquisition,
Technology and Logistics (AT&L); U.S. Navy (USN);
U.S. Air Force (USAF); and the U.S. Department of
Homeland Security (DHS). DoD-CIO co-sponsor:
Assistant Secretary of Defense (Networks and
Information Integration). OSD (AT&L) co-sponsor:
Software Engineering and System Assurance. USN co-
sponsor: Naval Air Systems Command. USAF co-
sponsors: Oklahoma City-Air Logistics Center (ALC)
76 Software Maintenance Group (SMXG); and
Ogden-ALC 309 SMXG. DHS co-sponsor: National
Cyber Security Division of the Office of
Infrastructure Protection.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 18.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

OpenOpen FFororumum

 



April 2008 www.stsc.hill.af.mil 3

From the Sponsor

Igot my first introduction to real project planning 10 years ago when CapabilityMaturity Model® Integration founding father Watts Humphrey came to Hill Air
Force Base to pilot the Team Software ProcessSM (TSPSM) with our TaskView project.
As a project manager with more than 11 years of software experience, including three
years in our software engineering process group and as a certified Personal Software
ProcessSM instructor, I was confident the plan I had led the TaskView team to construct
was flawless. Before Watts’ visit, we had spent several days defining all of the product

components and used a modified Delphi approach to estimate the duration of each one. We had
determined resources, made assignments, built a detailed Gantt chart with four dozen tasks,
identified all the dependencies, planned for every milestone, and determined the critical path.
We knew each and every deliverable, its customer, format, and need date. We were ready, or so
I thought.

Over the next week, I watched as Watts worked painstakingly with our team members to cre-
ate a real project plan, one that each engineer not only helped to create, but could use to guide
his or her daily activities. Our meager four-dozen task Gantt chart was replaced by a more than
400-task Earned Value Plan, estimated both by a top-down and bottom-up approach; our risks
were identified, recorded, categorized, prioritized, and assigned for follow-up, and a never-
before-conceived-of quality plan was generated.

All of this was for a six-month project of six people ... and the results of this launch were
staggering.

This plan was the basis of each weekly review. We were able to tell immediately when tasks
were falling behind schedule. TaskView avoided or mitigated all of its critical risks. The quality
of our product surpassed anything we had ever produced.

While I had known for several years that project planning and tracking were critical, it was
not until this experience that I realized how useful these plans could be. Not only did they guide
our actions, but they provided a basis for stability when requirements inevitably changed. In one
case, for example, I was able to use the planning data to determine quantitatively that I could
loan one of our engineers to another team without risking the TaskView delivery. Since that
time, I have been a staunch advocate not only of the TSP but of taking the time to do real pro-
ject planning. These solid, effective plans are worth all of the effort to create and maintain them.

This month’s CrossTalk is filled with wonderful guidance for the critical tasks of plan-
ning and tracking software projects. First, in his article Software Tracking: The Last Defense Against
Failure, software veteran Capers Jones details four worst practices leading to catastrophic failure and
even litigation on software projects. With his usual prowess, Capers succinctly uncovers the
mines in the minefield so that the rest of us can avoid them!

My two favorite articles in this month’s issue are Does Project Performance Stability Exist? A Re-
examination of CPI and Evaluation of SPI(t) Stability by Kym Henderson and Dr. Ofer Zwikael
(spoiler alert: It does eventually), and Walt Lipke’s Schedule Adherence: A Useful Measure for Project
Management. Both articles focus on Lipke’s new Earned Schedule measure: an exciting, innova-
tive, and effective new way to make better use of Earned Value planning and tracking data.

As we all know, the most unpredictable portion of any software development or mainte-
nance cycle is software testing. Dr. David J. Coe explains how to make testing more efficient and
effective in A Review of Boundary Value Analysis Techniques.

Real project planning and tracking begins with making good estimates, and in the capstone
article, Truth and Confidence: Some of the Realities of Software Project Estimation, Phillip G. Armour
details the many issues that make software project estimating unusually difficult and suggests a
fascinating new view of the process (and outcome) that makes estimates more usable.

To keep the attention of the techies, there is also an article from David Premeaux, discussing
VoIP Softphones.

This month’s articles will help guide us in making and following highly effective and real pro-
ject plans.

Keeping It Real

David R. Webb
309th Software Maintenance Group



4 CROSSTALK The Journal of Defense Software Engineering April 2008

This article is based on software pro-
jects that were in litigation for breach

of contract. It concentrates on four worst
practices or the factors that most often
lead to failure and litigation. A previous
article dealt with additional problems
noted during litigation [1].

For the purposes of this article, soft-
ware failures are defined as software pro-
jects which met any of the following
attributes:
1. Termination of project due to cost or

schedule overruns.
2. Schedule or cost overruns in excess of

50 percent of initial estimates.
3. Applications which, upon deployment,

fail to operate safely.
4. Lawsuits brought by clients for contrac-

tual non-compliance.
Although there are many factors associ-

ated with schedule delays and project can-
cellations, the failures that end up in court
always seem to have four major deficiencies:
1. Accurate estimates were either not pre-

pared or were rejected.
2. Change control was not handled effec-

tively.
3. Quality control was inadequate.
4. Progress tracking did not reveal the true

status of the project.
Let us consider each of these topics in

turn.

Estimating Problems
Although cost estimation is difficult, there
are a number of commercial software cost
estimating tools that do a capable job:
COCOMO II, KnowledgePlan, Price-S,
SEER, SLIM, and SoftCost are examples.

However, just because an accurate esti-
mate can be produced using a commercial
estimating tool, this does not mean that
clients or executives will accept it. In fact,
from information presented during litiga-
tion, about half of the cases did not pro-
duce accurate estimates at all. The other half
had accurate estimates but they were reject-
ed and replaced by forced estimates based

on business needs rather than team abilities.
The main reason that accurate estimates

were rejected and replaced was the absence
of supporting historical data. Without this,
even accurate estimates may not be con-
vincing. A lack of solid historical data
makes project managers, executives, and
clients blind to the realities of software
development.

A situation such as this was one of the
contributing factors to the long delay in
opening the Denver International Airport.
Estimates for the length of time to com-
plete and debug the very complex baggage
handling software were not believed [2].

For more than 60 years the software
industry lacked a solid empirical foundation
of measured results that was available to the
public. Thus, almost every major software
project is subject to arbitrary and some-
times irrational schedule and cost con-
straints. However, the International
Software Benchmarking Standards Group
(ISBSG), a non-profit organization, has
started to improve this situation by offering
schedule, effort, and cost benchmark
reports to the general public1. Currently,
more than 4,000 projects are available, and
new projects are added at a rate of perhaps
500 per year.

There are other collections of software
benchmark data, such as those gathered by
the Gartner Group, David’s Consulting
Group, Software Productivity Research,
and other companies, as well. However, this
data is usually made available only on a sub-
scription basis to specific clients of the
organizations. The ISBSG data, by contrast,
is available to the general public.

Changing Requirements
The average rate at which software
requirements change is about 1 percent
per calendar month. Thus, for a project
with a 12 month schedule, more than 10
percent of the final delivery will not have
been defined during the requirements
phase. For a 36-month project, almost a

third of the features and functions may
have come in as an afterthought.

These are only average results. The
author has observed a three-year project
where the delivered product exceeded the
functions in the initial requirements by
about 289 percent. It is of some impor-
tance to the software industry that the rate
at which requirements creep or grow can
now be measured directly by means of the
function point metric. This explains why
function point metrics are now starting to
become the basis of software contracts and
outsource agreements.

Unfortunately, in projects where litiga-
tion occurred, requirements changes were
numerous but their effects were not prop-
erly integrated into cost, schedule, and qual-
ity estimates. As a result, unplanned slip-
pages and overruns occurred.

In several cases, the requirements
changes had not been formally included in
the contracts for development, and the
clients refused to pay for changes that sub-
stantially affected the scope of the projects.
One case involved 82 changes that totaled
to more than 2,000 function points or
about 20 percent of the original size of the
initial requirements.

Since the defect potentials for chang-
ing requirements are larger than for the
original requirements by about 10 percent,
and since defect removal efficiency for
changing requirements is lower by about 5
percent, projects with large volumes of
changing requirements also have severe
quality problems, which are usually invisi-
ble until testing begins. When testing
begins, the project is in serious trouble
because it is too late to bring the schedule
and cost overruns under control.

Requirements changes will always occur
for large systems. It is not possible to freeze
the requirements of any real-world applica-
tion and it is naïve to think it is possible.
Therefore, leading companies are ready and
able to deal with changes and do not let
them become impediments to progress. For

Software Tracking:
The Last Defense Against Failure 

Capers Jones
Software Productivity Research, LLC

From working as an expert witness in a number of lawsuits where large software projects were cancelled or did not operate
correctly when deployed, I found that four major problems occur repeatedly: 1) accurate estimates are not produced or are over-
ruled; 2) requirements changes are not handled effectively; 3) quality control is deficient; and 4) progress tracking fails to alert
higher management to the seriousness of the issues. There are often other problems as well, but these four always occur in
breach of contract litigation.

Project Tracking



Software Tracking:The Last Defense Against Failure 

April 2008 www.stsc.hill.af.mil 5

projects developed under contract, the con-
tract itself must include unambiguous lan-
guage for dealing with changes.

Quality Problems
Effective software quality control is the
most important single factor that separates
successful projects from delays and disas-
ters. The reason for this is because finding
and fixing bugs is the most expensive cost
element for large systems, and it takes more
time than any other activity.

Successful quality control involves
defect prevention, defect removal, and
defect measurement activities. The phrase
defect prevention includes all activities that
minimize the probability of creating an
error or defect in the first place. Examples
of defect prevention activities include the
Six Sigma approach, joint application
design for gathering requirements, usage of
formal design methods, usage of structured
coding techniques, and usage of libraries of
proven reusable material.

The phrase defect removal includes all
activities that can find errors or defects in
any kind of deliverable. Examples of defect
removal activities include requirements
inspections, design inspections, document
inspections, code inspections, and all kinds
of testing.

Some activities benefit both defect pre-
vention and defect removal simultaneously.
For example, participation in design and
code inspections is very effective in terms
of defect removal, and also benefits defect
prevention. Defect prevention is aided
because inspection participants learn to
avoid the kinds of errors that inspections
detect.

As stated earlier, a combination of
defect prevention and defect removal activ-
ities leads to some very significant differ-
ences in the overall numbers of software
defects, compared between successful and
unsuccessful projects [1]. However, addi-
tional data now shows that for projects in
the 10,000 function point range the suc-
cessful ones accumulate development totals
of around 4.0 defects per function point
and remove about 95 percent of them
before delivery to customers. In other
words, the number of delivered defects is
about 0.2 defects per function point or
2,000 total latent defects. Of these, about
10 percent or 200 would be fairly serious
defects. The rest would be minor or cos-
metic defects.

By contrast, the unsuccessful projects
accumulate development totals of around
7.0 defects per function point and remove
only about 80 percent of them before deliv-
ery. The number of delivered defects is
about 1.4 defects per function point or

14,000 total latent defects. Of these, 20 per-
cent (or 2,800) would be fairly serious
defects. This large number of latent defects
after delivery is very troubling for users.
The large number of delivered defects is
also a frequent cause of litigation.

Unsuccessful projects typically omit
design and code inspections and depend
purely on testing. The omission of up-front
inspections causes three serious problems:
1) The large number of defects still present
when testing begins slows the project to a
standstill; 2) The bad fix injection rate for
projects without inspections is alarmingly
high; and 3) The overall defect removal effi-
ciency associated with only testing is not
sufficient to achieve defect removal rates
higher than about 80 percent.

Software Milestone Tracking
Those readers who work for the
Department of Defense or for a defense
contractor will note that the earned value
approach is only cited in passing. There are
several reasons for this. First, none of the
lawsuits where the author was an expert
witness involved defense projects so the
earned-value method was not utilized.
Second, although the earned-value method
is common in the defense community, its
usage among civilian projects including out-
sourced projects is very rare. Third, empiri-
cal data on the effectiveness of the earned-
value approach is sparse. A number of
defense projects that used earned-value
methods have run late and been over bud-
get. There are features of the earned-value
method that would seem to improve both
project estimating and project tracking, but
empirical results are sparse.

Once a software project is under way,
there are no fixed and reliable guidelines for
judging its rate of progress. The civilian
software industry has long utilized ad hoc
milestones such as completion of design or
completion of coding. However, these
milestones are notoriously unreliable.

Tracking software projects requires
dealing with two separate issues: 1) achiev-
ing specific and tangible milestones, and 2)
expending resources and funds within spe-
cific budgeted amounts.

Because software milestones and costs
are affected by requirements changes and
scope creep, it is important to measure the
increase in size of requirements changes,
when they affect function point totals.
However, there are also requirements
changes that do not affect function point
totals which are termed requirements churn.
Both creep and churn occur at random
intervals. Churn is harder to measure than
creep and is often measured via backfiring or
mathematical conversion between source

code statements and function point metrics.
For an industry now more than 50 years

old, it is somewhat surprising that there is
not a general or universal set of project
milestones for indicating tangible progress.
From the author’s assessment and baseline
studies, Table 1 (see next page) shows some
representative milestones that have shown
practical value.

The most important aspect of Table 1
is that every milestone is based on com-
pleting a review, inspection, or test. Just
finishing up a document or writing code
should not be considered a milestone
unless the deliverables have been reviewed,
inspected, or tested.

Suggested Format for Monthly
Status Reports for Software
Projects
A suggested format for monthly progress
tracking reports delivered to clients and
higher management would include the fol-
lowing:
1. Status of last month’s red flag problems.
2. New red flag problems noted this month.
3. Change requests processed this month

versus change requests predicted.
4. Change requests predicted for next

month.
5. Size in function points for this month’s

change requests.
6. Size in function points predicted for

next month’s change requests.
7. Schedule impacts of this month’s

change requests.
8. Cost impacts of this month’s change

requests.
9. Quality impacts of this month’s change

requests.
10. Defects found this month versus

defects predicted.
11. Defects predicted for next month.
12. Costs expended this month versus costs

predicted.
13. Costs predicted for next month.
14. Deliverables completed this month ver-

sus deliverables predicted.
15. Deliverables predicted for next month.

An interesting question is the frequency
with which milestone progress should be
reported. The most common reporting fre-
quency is monthly, although exception
reports can be filed at any time it is sus-
pected that something has occurred that
can cause perturbations. For example, seri-
ous illness of key project personnel or res-
ignation of key personnel might very well
affect project milestone completions – this
kind of situation cannot be anticipated.

It might be thought that monthly
reports are too far apart for small projects
that last six months or less in total. For



Project Tracking

6 CROSSTALK The Journal of Defense Software Engineering April 2008

small projects, weekly reports might be pre-
ferred. However, small projects usually do
not get into serious trouble with cost and
schedule overruns, whereas large projects
almost always get in trouble with cost and
schedule overruns. This article concentrates
on the issues associated with large projects.
In the litigation where the author has been
an expert witness, every project in litigation
except one was larger than 10,000 function
points in size.

Failing or delayed projects usually lack
serious milestone tracking. Activities are
often reported as finished while work was
still ongoing. Milestones on failing pro-
jects are usually dates on a calendar rather
than completion and review of actual
deliverables.

Delivering documents or code segments

that are incomplete, contain errors, and can-
not support downstream development
work is not the way milestones are used by
industry leaders.

Because milestone tracking occurs
throughout software development, it is the
last line of defense against project failures
and delays. Milestones should be established
formally and should be based on reviews,
inspections, and tests of deliverables.
Milestones should not be the dates that
deliverables more or less were finished; they
should reflect the dates that finished deliv-
erables were validated by means of inspec-
tions, testing, and quality assurance review.

Summary and Results
Overcoming the risks shown here is largely
a matter of opposites, or doing the reverse

of what the risk indicates. Thus a well-
formed software project will create accurate
estimates derived from empirical data and
supported by automated tools for handling
the critical path issues. Such estimates will
be based on the actual capabilities of the
development team and will not be arbitrary
creations derived without any rigor. The
plans will specifically address the critical
issues of change requests and quality con-
trol. In addition, monthly progress reports
will also deal with these critical issues.
Accurate progress reports are the last line
of defense against failures.u

References
1. Jones, Capers. “Social and Technical

Reasons for Software Project Failure.”
CrossTalk June 2006: 4-9.

2. Gibbs, T. Wayt. “Trends in Computing:
Software’s Chronic Crisis.” Scientific
American Magazine Sept. 1994: 72-81.

Note
1. This data is available in both CD and

paper form <www.isbsg.org>.

1

1. Requirements document completed.
2. Requirements document review completed.
3. Initial cost estimate completed.
4. Initial cost estimate review completed.
5. Development plan completed.
6. Development plan review completed.
7. Cost tracking system initialized.
8. Defect tracking system initialized.
9. Prototype completed.
10. Prototype review completed.
11. Complexity analysis of base system (for enhancement projects).
12. Code restructuring of base system (for enhancement projects).
13. Functional specification completed.
14. Functional specification review completed.
15. Data specification completed.
16. Data specification review completed.
17. Logic specification completed.
18. Logic specification review completed.
19. Quality control plan completed.
20. Quality control plan review completed.
21. Change control plan completed.
22. Change control plan review completed.
23. User information plan completed.
24. User information plan review completed.
25. Code for specific modules completed.
26. Code inspection for specific modules completed.
27. Code for specific modules unit tested.
28. Test plan completed.
29. Test plan review completed.
30. Test cases for specific test stage completed.
31. Test case inspection for specific test stage completed.
32. Test stage completed.
33. Test stage review completed.
34. Integration for specific build completed.
35. Integration review for specific build completed.
36. User information completed.
37. User information review completed.
38. Quality assurance sign off completed.
39. Delivery to beta test clients completed.
40. Delivery to clients completed.

Table 1: Representative Tracking Milestones for Large Software Projects

About the Author

Capers Jones is cur-
rently the chairman of
Capers Jones and Asso-
ciates, LLC. He is also
the founder and former
chairman of Software

Productivity Research (SPR) where he
holds the title of Chief Scientist
Emeritus. He is a well-known author and
international public speaker, and has
authored the books “Patterns of
Software Systems Failure and Success,”
“Applied Software Measurement,” “Soft-
ware Quality: Analysis and Guidelines
for Success,” “Software Cost Esti-
mation,” and “Software Assessments,
Benchmarks, and Best Practices.” Jones
and his colleagues from SPR have col-
lected historical data from more than 600
corporations and more than 30 govern-
ment organizations. This historical data is
a key resource for judging the effective-
ness of software process improvement
methods.

Software Productivity 
Research, LLC
Phone: (877) 570-5459
Fax: (781) 273-5176
E-mail: capers.jones@spr.com,

info@spr.com



April 2008 www.stsc.hill.af.mil 7

The cancellation of the U.S. Navy’s A-
12 Avenger II stealth aircraft program

in January 1991 resulted in research during
the 1990s, which investigated the reliabili-
ty of EVM cost prediction and the behav-
ior of the CPI using DoD project2 data [1,
2]. These research findings have come to
be regarded as generally applicable across
all project types using EVM across multi-
ple industry sectors. A finding regarded as
particularly significant was that CPI stabi-
lizes by 20 percent of project completion.

Lipke proposed the ES method in
2003 to provide time-based measures of
schedule performance utilizing EVM data.
Initial validation has shown that the time-
based ES-derived SPI(t) to be reliable for
both early and late finish projects. For a
technical description of the ES method,
the reader is referred to [3]. For an excel-
lent, easy-to-read, non-technical but com-
prehensive discussion of the ES method,
refer to [4].

Following the initial validation of ES,
interest developed in ascertaining whether
SPI(t) exhibited similar stability character-
istics to those extensively reported for
CPI. The objective of this article is to re-
examine CPI stability and to compare the
stability behavior of the SPI(t) with CPI.

This article found that while the
behavior of the SPI(t) is broadly consis-
tent with CPI, the widely reported CPI
stability rule cannot be generalized to all
projects utilizing the EVM method or
even within the DoD project portfolio.
However, the consistent behavior to CPI
demonstrated by SPI(t) provides further
support for the validity of the SPI(t) met-
ric and the ES method.

Additional analysis was unable to
establish a correlation between achieving
earlier CPI and SPI(t) stability and
improved outcomes at completion. In cer-
tain cases, where projects achieved either

under budget and/or early finish out-
comes with cost and/or schedule stability
achieved late, earlier cost and/or schedule
stability would have been disadvantageous
to the actual final outcome(s) achieved.
This is because CPI and/or SPI(t) pro-
gressively improved over the life of those
projects.

This article also demonstrates that by
utilizing ES, research of schedule perfor-
mance using EVM data is now possible
and leads to improved understanding of
the dynamics of project schedule and pro-
ject cost performance.

Background
The CPI has long been a key indicator
used to analyze the cost performance of
projects using EVM. The first empiric
confirmation of the widely reported and
referenced CPI stability rule was by
Christensen and Payne, using data from
26 U.S. Air Force-completed contracts in
1992. The data used came from the cost
library of the U.S. Air Force Systems
Command Aeronautical Systems
Division [5].

Christensen and Templin conveniently
summarized the series of research find-
ings subsequent to [5] in 2002:

… the range of the cumulative CPI
from the 20 percent completion
point to contract completion was
less than 0.20 for every contract.
This result is usually interpreted to
mean that the cumulative CPI does
not change by more than plus or
minus 0.10 from its value at the 20
percent completion point, and is
used to evaluate the reasonableness
of projected cost efficiencies on
future work [6].

Christensen and Payne made the following

observations on the perceived importance
of CPI stability:

• A stable CPI is evidence that the
contractor’s management control
systems, particularly the planning,
budgeting, and accounting systems,
are functioning properly.

• A stable CPI may thus indicate that
the contractor’s estimated final
costs of the authorized work,
termed Estimated at Completion
(EAC), are reliable.

• In addition, knowing that the CPI
is stable may help the analyst eval-
uate the capability of a contractor
to recover from a cost overrun by
comparing the CPI with other key
indicators, such as the To-
Complete Performance Index [5].

Over time, the widely reported CPI
stability findings have been generalized as
being applicable to all projects utilizing the
EVM method [7-11]. An extensive litera-
ture review has not found further empiric
validation of the CPI stability rule beyond
the project data obtained in the initial
paper and data from the DoD Defense
Acquisition Executive Summary (DAES)
database.

Concurrent research into the stability
characteristics of the EVM SPI was not
possible because the SPI is known to fail
as a statistical predictor because it always
returns to unity at project completion,
irrespective of duration-based delay. The
SPI is also recognized as failing nominally
within the final third of the project, and it
also fails after the project’s planned dura-
tion has been exceeded.

Lipke proposed the ES method in
2003 as a solution to these limitations and
flaws of the EVM schedule indicators [3].
A series of studies provided initial valida-

Does Project Performance Stability Exist? 
A Re-examination of CPI and Evaluation of SPI(t) Stability

The development of the Earned Schedule (ES) method by Walt Lipke in 2003 has been shown to be an important exten-
sion to the Earned Value Management (EVM) method, increasing the utility of EVM data for project schedule analysis,
control, and oversight. As ES provides a reliable time-based indicator of schedule performance, the objective of this article is
to investigate whether the Schedule Performance Index (time) (SPI[t]) exhibited similar stability characteristics to those exten-
sively reported for the Cost Performance Index (CPI)1 in EVM. This article analyzes EVM data from three different coun-
tries for projects in three industry segments. There were 37 projects examined for SPI(t) stability and 26 for CPI stability.
It has been found that while the behavior of SPI(t) is broadly consistent with CPI, the widely reported CPI stability rule
cannot be generalized even within the U.S. Department of Defense (DoD) project portfolio. Further research is required to
develop improved understanding of project performance characteristics and the behavior of CPI and the SPI(t).

Dr. Ofer Zwikael
Victoria University of Wellington

Kym Henderson
PMI College of Performance Management



8 CROSSTALK The Journal of Defense Software Engineering April 2008

tion of the ES method, some by using real
EVM project data and also by using simu-
lated work schedules [12-16]. The time-
based ES derived SPI(t) has been shown
to be reliable for both early and late finish
projects. The SPI(t) only reverts to unity at
project completion if on-time completion
has been achieved.

A research study intended to validate
the ES construct using DAES data was
commissioned in 2004 and undertaken by
a U.S. Air Force Institute of Technology
masters student. Unfortunately, this study
was discontinued after an independent
review determined the following:

Results: The historical data collec-
tion procedures for the DoD and
U.S. Air Force do not allow for suf-
ficient testing of ES theory at this
time. A statistical evaluation con-
cluded that SPI(t) is different than
SPI($); however, the two variables
are highly correlated. The result of
the analysis identified that SPI(t)
performs similarly to SPI($) with
the data contained in the DAES
database. In order for the ES theo-
ry to be fully investigated, addition-
al data must be collected. This
research shows that the necessary
data may also not be available
despite the best collection efforts.
The original schedule and planned
duration information is critical to
successful evaluation of the ES
methodology [17].

However, early interest by the Project
Management Institute (PMI) resulted in
the principles of ES being included as an
Emerging Practice Insert in the Practice
Standard for Earned Value Management
published in 2004 [18].

Following the initial validation of ES,
interest developed in ascertaining whether
the SPI(t) exhibited similar stability char-
acteristics to those extensively reported
for the CPI. The objective of this article is
to re-examine CPI stability and to com-
pare the stability behavior of the SPI(t)
with CPI.

Method for Evaluating
Stability
EVM project data was loaded into a
Microsoft Excel Stability Point Calculator3
developed by Lipke. The calculator deter-
mines the observation number in a
sequence of CPI and SPI(t) values at
which all subsequent observations are
within a defined stability limit. The stabili-
ty limit used is 0.10. The calculator enables

CPI Stability
Test Statistic Test Result

SPI(t) Stability
Test Statistic Test Result

UK Construction 0.623 Ho 0.748 Ho
Australian IT 1.000 Ho 0.500 Ho
Israeli Hi-Tech 0.806 Ho 0.613 Ho
Composite 0.916 Ho 0.629 Ho

Stability Achieved UK
Construction

Australian
IT

Composite

SPI(t) cum. 20% 3 0 1 4

> 20% 17 5 11 33

CPI cum. 20% 2 0 1 3

> 20% 8 4 11 23

Israeli
Hi-Tech

Total Projects Within Each Stability Percentile Band
(Three Data Samples Aggregated)

7

6

5

4

3

2

1

0
0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%

UK Construction

Australian IT

Israeli Hi-Tech

SPI(t) Stability Totals

UK Construction

Australian IT

Israeli Hi-Tech

SPI(t) Stability Totals

Project Completion Categories by CPI Stability Bands
(Three Data Samples Aggregated)

Israeli Hi-Tech

Australian IT

UK Construction

Totals

6

5

4

3

2

1

0
UOB OvB

0-10%

UOB OvB

10-20%

UOB OvB

20-30%

UOB OvB

30-40%

UOB OvB

40-50%

UOB OvB

50-60%

UOB OvB

60-70%

UOB OvB

70-80%

UOB OvB

80-90%

UOB OvB

90-100%

Table 1: Hypothesis Test Results

CPI Stability
Test Statistic Test Result

SPI(t) Stability
Test Statistic Test Result

UK Construction 0.623 Ho 0.748 Ho
Australian IT 1.000 Ho 0.500 Ho
Israeli Hi-Tech 0.806 Ho 0.613 Ho
Composite 0.916 Ho 0.629 Ho

Stability Achieved UK
Construction

Australian
IT

Composite

SPI(t) cum. 20% 3 0 1 4

> 20% 17 5 11 33

CPI cum. 20% 2 0 1 3

> 20% 8 4 11 23

Israeli
Hi-Tech

Total Projects Within Each Stability Percentile Band
(Three Data Samples Aggregated)

7

6

5

4

3

2

1

0
0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%

UK Construction

Australian IT

Israeli Hi-Tech

SPI(t) Stability Totals

UK Construction

Australian IT

Israeli Hi-Tech

SPI(t) Stability Totals

Project Completion Categories by CPI Stability Bands
(Three Data Samples Aggregated)

Israeli Hi-Tech

Australian IT

UK Construction

Totals

6

5

4

3

2

1

0
UOB OvB

0-10%

UOB OvB

10-20%

UOB OvB

20-30%

UOB OvB

30-40%

UOB OvB

40-50%

UOB OvB

50-60%

UOB OvB

60-70%

UOB OvB

70-80%

UOB OvB

80-90%

UOB OvB

90-100%

Figure 1: Total Projects CPI and SPI(t) Stability Within Each 10 Percentile Band

CPI Stability
Test Statistic Test Result

SPI(t) Stability
Test Statistic Test Result

UK Construction 0.623 Ho 0.748 Ho
Australian IT 1.000 Ho 0.500 Ho
Israeli Hi-Tech 0.806 Ho 0.613 Ho
Composite 0.916 Ho 0.629 Ho

Stability Achieved UK
Construction

Australian
IT

Composite

SPI(t) cum. 20% 3 0 1 4

> 20% 17 5 11 33

CPI cum. 20% 2 0 1 3

> 20% 8 4 11 23

Israeli
Hi-Tech

Total Projects Within Each Stability Percentile Band
(Three Data Samples Aggregated)

7

6

5

4

3

2

1

0
0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%

UK Construction

Australian IT

Israeli Hi-Tech

SPI(t) Stability Totals

UK Construction

Australian IT

Israeli Hi-Tech

SPI(t) Stability Totals

Project Completion Categories by CPI Stability Bands
(Three Data Samples Aggregated)

Israeli Hi-Tech

Australian IT

UK Construction

Totals

6

5

4

3

2

1

0
UOB OvB

0-10%

UOB OvB

10-20%

UOB OvB

20-30%

UOB OvB

30-40%

UOB OvB

40-50%

UOB OvB

50-60%

UOB OvB

60-70%

UOB OvB

70-80%

UOB OvB

80-90%

UOB OvB

90-100%

Table 2: Summary of Stability Achievement Related to 20 Percent Completion 

CPI Stability
Test Statistic Test Result

SPI(t) Stability
Test Statistic Test Result

UK Construction 0.623 Ho 0.748 Ho
Australian IT 1.000 Ho 0.500 Ho
Israeli Hi-Tech 0.806 Ho 0.613 Ho
Composite 0.916 Ho 0.629 Ho

Stability Achieved UK
Construction

Australian
IT

Composite

SPI(t) cum. 20% 3 0 1 4

> 20% 17 5 11 33

CPI cum. 20% 2 0 1 3

> 20% 8 4 11 23

Israeli
Hi-Tech

Total Projects Within Each Stability Percentile Band
(Three Data Samples Aggregated)

7

6

5

4

3

2

1

0
0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%

UK Construction

Australian IT

Israeli Hi-Tech

SPI(t) Stability Totals

UK Construction

Australian IT

Israeli Hi-Tech

SPI(t) Stability Totals

Project Completion Categories by CPI Stability Bands
(Three Data Samples Aggregated)

Israeli Hi-Tech

Australian IT

UK Construction

Totals

6

5

4

3

2

1

0
UOB OvB

0-10%

UOB OvB

10-20%

UOB OvB

20-30%

UOB OvB

30-40%

UOB OvB

40-50%

UOB OvB

50-60%

UOB OvB

60-70%

UOB OvB

70-80%

UOB OvB

80-90%

UOB OvB

90-100%

Figure 2: Project Completion Categories by CPI Stability Band

Project Tracking



Does Project Performance Stability Exist? A Re-examination of CPI and Evaluation of SPI(t) Stability

April 2008 www.stsc.hill.af.mil 9

the associated percentage complete at
which stability occurs to be determined.

To determine the significance of the
observations of stability for both CPI and
SPI(t), statistical hypothesis testing is con-
ducted. The test applied is the Sign Test at
0.05 level of significance4 [19]. The Sign
Test was used in this research because it
does not depend upon the data having a
normal distribution. In past research, the
hypothesis test method chosen implied
that the data was normally distributed;
however, the normality of the data was
not established. Research by Lipke also
suggests the following:

Results indicate the logarithm data
representations of the indexes are
likely normally distributed, whereas
the distributions for CPI, SPI, and
CV are not [20].

The question to answer regarding sta-
bility is can it be stated generally and reliably
that the final value of the performance index is
within 0.10 of its value when the project is 20
percent complete? The answer to the question
will be yes if the alternate hypothesis is
satisfied:

H1(CPI): |CPI(final) – CPI(20%)| < 0.10

H2 (SPI(t)): |SPI(t)(final) – SPI(t)(20%)|
< 0.10 

Two separate hypothesis tests are con-
ducted, one for CPI and one for the
SPI(t). The result from the hypothesis
testing is recorded as Ha when the value
of the test statistic is in the critical region
(0.05) and Ho (null hypothesis) when it is
not.

The Data
A composite EVM data set was assembled
comprising commercial sector data sam-
ples obtained from following:
• Twenty-four United Kingdom (UK)

construction projects.
• Twelve Israeli high-technology (Hi-

Tech) projects.
• Nine Australian Information

Technology (IT) projects.
The EVM data consists of direct labor

costs only with the following:
• UK construction projects recorded in

person days weekly with EVM values
expressed as a percentage of the bud-
get at complete to further maintain
data anonymity.

• Israeli Hi-Tech projects recorded in
U.S. dollars monthly.

• Australian IT projects recorded in
Australian dollars weekly.

An extensive review of the data was
undertaken. Projects were excluded from
the sample for a variety of reasons includ-
ing the following:
• Lack of data integrity.
• Lack of EV data at 20 percent of pro-

ject completion.
• Partially incomplete Planned Value

data.
• Lack of required Actual Cost (AC)

data.
Ten UK construction projects are

included in the CPI stability research sam-
ple. Five of these project were included
although the final AC data available was
between 96.7 percent and 99.0 percent
complete. Including those five projects is
consistent with the approach adopted by
Christensen and Payne’s research and
assumes that the difference between
CPIFinal and the latest available CPI has no
material impact on the findings [5].

The outcome was a usable data sample
of the following:
• Twelve Israeli Hi-Tech projects for the

SPI(t) and CPI stability research.
• Twenty UK construction projects for

the SPI(t) stability and 10 for CPI sta-
bility research.

• Five Australian IT projects for the
SPI(t) stability and four for CPI stabil-
ity research.

Stability Evaluation Results
The results of the sign tests for the fol-
lowing hypothesis are shown in Table 1:
Can it be stated generally and reliably that
the final value of the performance index is
within 0.10 of its value when the project is
20 percent complete? Recall that the test
result of Ha indicates stability of the per-
formance indicators CPI and the SPI(t).
As is shown, the test results did not have
any test statistic in the critical region (0.05).
As a result, none of the null hypotheses
can be rejected for any of the three sam-
ples or the composite of all samples. This
means that stability was not achieved for
either CPI or the SPI(t) by the time the
project was 20 percent complete.

This research does not support the
previously referenced generalizations that
the CPI stability rule has universal applica-
bility for all projects utilizing the EVM
method. Because the SPI(t) index demon-
strates a similar lack of stability to that
found for CPI, the validity of the SPI(t)
metric is supported due to the consistent
behavior demonstrated with CPI.

Table 2 summarizes the raw data in
relation to the numbers of projects that
achieved stability before or after 20 per-
cent completion for the SPI(t) and CPI by
each project set and for the composite of

all. It can be seen that the majority of pro-
jects reach stability only after the 20 per-
cent completion point.

Figure 1 summarizes each 10 percent
complete percentile band where CPI and
the SPI(t) stability occurred. This figure
shows the following:
• The wide variability in the achievement

of stability for both CPI and the SPI(t).
Project performance heuristics or rules
of thumb intended to be generally
applicable (e.g., the CPI stability rule)
require an empirically established con-
sistency of behavior across a broad
range of projects. These findings are a
significant impediment to proposing
and confirming broadly applicable CPI
and SPI(t) stability heuristics.

• That stability is usually achieved very
late in the project life cycle, often later
than 80 percent complete for projects
in these samples.
Zwikael analyzed the Israeli Hi-Tech

project sample using visual inspection of
charts and suggested that CPI stability was,
on average, achieved at the 60 percent
completion point [21]. That analysis
broadly confirms this article’s finding of
CPI stability being achieved much later in
the project life cycle than previously
reported.

Additional Analysis
Following the lack of CPI and SPI(t) sta-
bility findings additional analysis was con-
ducted. Within each 10 percent complete
percentile band projects were categorized
as follows:
• Cost at completion:

o Under or On Budget (UOB).
o Over Budget (OvB).

• Schedule at completion:
o Early or On Time finish (EOT).
o Late Finish (LF).
The purpose of this analysis is to

determine if there is a correlation between
achieving earlier CPI and the SPI(t) stabil-
ity and improved project outcomes.

Figure 2 summarizes the analysis for
CPI and Figure 3 (see next page) does the
same for the SPI(t). With the data samples
utilized, achievement of earlier stability is
not correlated with improved final cost
and/or schedule outcomes.

For UOB and EOT projects where
cost and schedule stability was achieved
late (after, say, 60 percent completion)
achieving earlier stability would have been
disadvantageous to the final outcome(s)
achieved because project performance
progressively improved over the life of
those projects.

Figure 4 summarizes projects (with
the required comparative data), which



achieved SPI(t) or CPI stability first.
Achieving SPI(t) stability first implies
schedule management had a higher man-
agement priority; achieving CPI stability
first implies cost management had the
higher priority.

In the Australian IT projects sample,
SPI(t) stability was achieved first for the
preponderance of projects. For the other
data samples, the achievement of cost or
schedule, stability first occurred in rough-
ly equal proportion. In only one project
in these samples – an Australian IT pro-
ject  – was the cost and schedule stability
achieved simultaneously.

Corroboration With Other
Research
Because of the comprehensive contradic-
tion to the previously published CPI sta-
bility research findings, a further literature
review was undertaken. This review
obtained a most unexpected source of
independent corroboration for this arti-

cle’s CPI stability findings. In the mid-90s,
Michael Popp, a civilian employee of the
U.S. Naval Air Command (NAVAIR), ini-
tiated an internal DoD research project
within NAVAIR.

The output was an internal but
unclassified NAVAIR report (the Popp
report) which has, with Popp’s permis-
sion, now been placed into the public
domain on the PMI Sydney Chapter Web
site [22]. The purpose of the Popp study
was to develop probability distributions
of cost EACs based on the CPI at com-
plete, current CPI, and percentage com-
plete of projects based on history. As
stated in the report: Given a program has
a CPI of X and a percent complete of Y,
what is the most likely finishing CPI [22]?

In contrast to Christensen and associ-
ates research, which used data from the
DAES database, the data used by Popp
was sourced from the Contracts Analysis
System database maintained by the Office
of the Secretary of Defense Cost
Analysis Improvement Group.

The research undertaken by Popp did
not focus on CPI stability. However,
charts which can also be used for assess-
ing CPI stability were completed as part
of that study. These charts correlate the
cumulative CPI for the percentage com-
plete in each 10 percent complete per-
centile band to the CPIFinal for all projects
in that sample.

Figure 5 is the first chart of interest
from the Popp report, as it shows the cor-
relation between the cumulative CPI at
10-20 percent complete and the CPI Final
for all projects in the sample.

The area of the chart enclosed within
the dashed lines bounds the area in which
the correlation plots must occur for the
Christensen derived CPI stability rule to
apply. Those plots which occur outside
the enclosed area are also in conflict with
the Christensen derived CPI stability rule.
The limited data samples used in this
analysis are sufficient to show that the
CPI stability rule cannot be generalized
even within the DoD project portfolio.

While research using the Popp report
data sample was not principally directed
at examining the validity of the CPI sta-
bility rule, this research found the follow-
ing:
• Development programs at 20 percent

(completion), programs with a cumulative
CPI below 0.89 improve which was close
to Christensen (findings), but with some
exceptions.

• Production programs at 20 percent
(completion), programs with a cumulative
CPI below 0.84 improve, again close to
Christensen (findings), but with some excep-
tions [23].
Using the enclosure technique, Figure 6

shows that the preponderance of plots
occur within the area where the CPI sta-
bility rule applies at 20 percent comple-
tion. The conclusion is that for the DoD
project data used by Popp, CPI stability
was also achieved very late in the project
life cycle, often as late as 70-80 percent
completion. This finding is consistent
with the late CPI stability findings for the
commercial sector project samples as
shown in Figure 1.

While the underlying data was not
available and further research is required,
these findings also conflict with the DoD
research findings quoted in the Beach
report into the A-12 cancellation:

DoD experience in more than 400
programs since 1977 indicates
without exception that the cumu-
lative CPI does not significantly
improve during the period
between 15% and 85% of contract

Project Tracking

10 CROSSTALK The Journal of Defense Software Engineering April 2008

Project Completion Categories by SPI(t) Stability Bands
(Three Data Samples Aggregated)

Summary of Projects Achieving
SPI(t) or CPI Stability First

EOT LF
0-10%

EOT LF
10-20%

EOT LF
20-30%

EOT LF
30-40%

EOT LF
40-50%

EOT LF
50-60%

EOT LF
60-70%

EOT LF
70-80%

EOT LF

80-90%

EOT LF

90-100%

Israeli Hi-Tech

Australian IT

UK Construction

Totals

0

1

2

3

4

5

6

0

2

4

6

8

10

12

14

16

UK Construction Australian IT Israeli Hi-Tech All Data

SPI(t) First

CPI First

Simultaneous

Figure 4: Summary of Projects Achieving SPI(t) or CPI Stability First

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 .150 1.60 1.70 1.80

Correlation Between Cumulative CPI
at 10-20% Complete and Final CPI

CPI at 10-20% Complete

F
in
al
C
P
I

Project Completion Categories by SPI(t) Stability Bands
(Three Data Samples Aggregated)

Summary of Projects Achieving
SPI(t) or CPI Stability First

EOT LF
0-10%

EOT LF
10-20%

EOT LF
20-30%

EOT LF
30-40%

EOT LF
40-50%

EOT LF
50-60%

EOT LF
60-70%

EOT LF
70-80%

EOT LF

80-90%

EOT LF

90-100%

Israeli Hi-Tech

Australian IT

UK Construction

Totals

0

1

2

3

4

5

6

0

2

4

6

8

10

12

14

16

UK Construction Australian IT Israeli Hi-Tech All Data

SPI(t) First

CPI First

Simultaneous

Figure 3: Project Completion Categories by SPI(t) Stability Band



Does Project Performance Stability Exist? A Re-examination of CPI and Evaluation of SPI(t) Stability

April 2008 www.stsc.hill.af.mil 11

performance; in fact, it tends to
decline [1].

Some projects in the Popp sample show a
trend of CPI performance improvement,
from CPI20 percent and in a smaller number
of cases, as late as CPI80 percent to CPIFinal.

Summary and Conclusion
The initial objective of this article –
ascertaining whether the SPI(t) demon-
strates similar stability characteristics to
those extensively reported for CPI – was
not achieved. This article has found that
while the behavior of the SPI(t) is broad-
ly consistent with CPI, the widely report-
ed CPI stability rule cannot be general-
ized to all projects using the EVM
method or even within the DoD project
portfolio. However, the consistent behav-
ior to CPI demonstrated by the SPI(t)
provides further support for the validity
of the SPI(t) metric and the ES method.

Additional analysis was unable to
establish a correlation between achieving
earlier CPI and the SPI(t) stability and
improved outcomes at completion. In
cases where projects achieved either
under budget and/or early finish out-
comes with cost and/or schedule stability
achieved late (i.e., after, say, 60 percent
completion), earlier cost and/or schedule
stability would have been disadvanta-
geous to the actual final outcome(s)
achieved. This is because CPI and/or the
SPI(t) were progressively improving over
the life of those projects.

The findings and corroboration of
this article require significant review and
revision to what has been regarded as a
long settled EVM heuristic with regard to
CPI stability and consequent practice
including the use of a stable CPI as evi-
dence that an EVM system is functioning
properly and of a reliable EAC [5].

Improvements to current EVM tech-
niques for predicting future cost perfor-
mance should be considered as current
techniques have relied on generalizing
research findings from limited data
sources, principally the DAES database.

Alternatives methods of cost and
schedule prediction using well-established
statistical principles and methods devel-
oped by Lipke show the following
promise:
• These techniques allow generation of

a range of cost and schedule predic-
tions from user defined Confidence
Limit(s).

• All information and data required for
these predictions comes from within
the project itself.
This may reduce the current depen-

dence on heuristics developed from
external project data sources, which
might not be applicable to the project of
interest.

To promote trials of these statistical
prediction techniques, a freely available
calculator can be found on the ES Web
site3. An academic article fully describing
the statistical prediction techniques and
supporting rationales is pending publica-
tion [24]. The statistical prediction tech-
niques developed have been summarized
in a presentation by Henderson which is
available at [25].

A major advance to EVM practice and
future research opportunities would be
development of a broadly based EVM
research database where completed EVM
project data could be submitted anony-

mously for the following:
• Researching purposes.
• Benchmarking completed project per-

formance.
• Assisting in the sizing of projects.

Such knowledge bases are not unique
in other disciplines, with an instructive
Australian example being the ISBSG Web
site at <www.isbsg.org>.

Improved data collection techniques
to ensure that baseline schedule informa-
tion is captured and stored in the DAES
database are also recommended.

Final Remarks and Future
Research
While this article has overturned long-
standing findings and beliefs on CPI sta-
bility, it is important that the strengths and

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 .150 1.60 1.70 1.80

Correlation Between Cumulative CPI
at 10-20% Complete and Final CPI

CPI at 10-20% Complete

F
in
al
C
P
I

Figure 5: Correlation Between Cumulative CPI at 10-20 Percent Complete and Final CPI (Popp) 

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 .150 1.60 1.70 1.80

Correlation Between Cumulative CPI
at 70-80% Complete and Final CPI

CPI at 70-80% Complete

F
in
al
C
P
I

Figure 6: Correlation Between Cumulative CPI at 70-80 Percent Complete and Final CPI (Popp) 



limitations of the EVM method are prop-
erly understood, particularly in the follow-
ing areas:
• Adoption of EVM by U.S. govern-

ment agencies through the Office of
Management Budget Circular A-11
Part 7 mandate.

• Advocacy of the use of EVM cost
predictors to assess compliance to the
Sarbanes-Oxley Act [9].

• Increased interest and the adoption of
EVM by organizations globally.
Where projects have not exhibited CPI

stability, EVM practitioners can now know
that this is neither unique, nor is it neces-
sarily an adverse reflection on the man-
agement or execution of those projects.

Various follow-on research opportuni-
ties arise from this article, which may
develop improved understanding of pro-
ject performance characteristics and gen-
eralizable heuristics. Suggestions include
examining the performance characteristics
of projects where the following happens:
• The CPI stability rule does seem

applicable (e.g., the subset highlighted
in the Popp report data) to determine
whether there are project characteris-
tics which result in early CPI stability.

• Early CPI stability was not achieved
due to progressively improving CPI
performance over the project life
cycle.
Academically oriented research aimed

at establishing a theoretical rationale for
project performance instability would be
another useful addition to the project
management body of knowledge.

While [23] provides the sobering
assessment consistent with Christensen’s
findings average to good programs do not
improve, an understanding of project char-
acteristics, which result in progressively
improving CPI would, if these character-
istics could be emulated in other pro-
grams, be an extremely useful advance to
practice. Such research could offer signifi-
cant opportunities for tangibly improving
project performance.

Research opportunities are equally
applicable to project schedule perfor-
mance. This article also demonstrates that
by using ES, research of schedule perfor-
mance using EVM data is possible and
already leading to improved understanding
of the dynamics of project schedule and
project cost performance.u

Acknowledgements
This research has been made possible due
to the generous assistance of the follow-
ing individuals:
• The project controls manager from

the UK-based construction company

(who desire anonymity) for making
available the UK construction pro-
jects’ EVM data.

• Michael Popp of NAVAIR for making
available the Popp Report and provid-
ing permission for the report to be
placed in the public domain on the
PMI Sydney Chapter Web site [22].
The support, suggestions, general

assistance, and review comments by the
ES advocates and researchers, which sig-
nificantly improved this article is also
appreciated. Responsibility for any errors,
omissions or erroneous conclusions
remains the sole responsibility of the
authors.

References
1. Beach, Chester Paul, Jr. “A-12

Administrative Inquiry. Report to the
Secretary of Navy.” Washington D.C.:
Department of the Navy, 1990
<www.suu.edu/faculty/christensend/
evms/beacha-1.pdf>.

2. Christensen, David S. “Using the
Earned Value Cost Management
Report To Evaluate The Contractor’s
Estimate at Completion.” Acquisition
Review Quarterly Summer 1999: 283-
295 <www.dau.mil/pubs/arq/99arq/
chrisevm.pdf>.

3. Lipke, Walt. “Schedule Is Different.”
The Measurable News Mar. 2003: 10-
15 <www.earnedschedule.com/Docs/
Schedule%20is%20Different.pdf>.

4. Stratton, Ray. “Not Your Father’s
Earned Value.” Projects at Work
<www.projectsatwork.com>, <www.
earnedschedule.com/Docs/Not%20
Your%20Father%27s%20Earned%20
Value.pdf>.

5. Christensen, David S., and Kirk Payne.
“Cost Performance Stability – Fact or
Fiction?” Journal of Parametrics 10
(1992): 27-40 <www.suu.edu/faculty/
christensend/evms/CPIstabilityJP.pdf>.

6. Christensen, David S., and Carl
Templin. “EAC Evaluation Methods:
Do They Still Work?” Acquisition
Review Quarterly (2002): 105-116
<www.suu.edu/faculty/christensend/
evms/eacevalmethods4.pdf>.

7. Christensen, D.S., and S.R. Heise.
“Cost Performance Index Stability.”
National Contract Management
Journal 25 (1993): 7-15 <www.suu.
edu/faculty/christensend/evms/CPI
stabilityNCMJ.pdf>.

8. Fleming, Quentin, and Joel
Koppelmann. The Earned Value Body
of Knowledge. Proc. of the 30th
Annual PMI 1999 Seminars and
Symposium, Philadelphia, PA.

9. Fleming, Quentin, and Joel

Project Tracking

12 CROSSTALK The Journal of Defense Software Engineering April 2008

COMING EVENTS

April 29-May 2 

2008 Systems and Software
Technology Conference

Las Vegas, NV
www.sstc-online.org

May 5-9

PSQT West 2008
International Conference on Practical

Software Quality and Testing
Las Vegas, NV

www.psqtconference.com

May 5-9
STAR EAST 2008

Software Testing Analysis and Review
Orlando, FL

www.sqe.com/StarEast

May 6
SLAAD 2008

Strike, Land Attack and Air Defense
Division Annual Symposium

Laurel, MD
www.ndia.org

May 13-15
Continuous Process 

Improvement Symposium
Ogden, UT

www.cpi-symposiums.com/info.html

May 14-15

8th Annual ISSEA Conference
International Systems Security

Engineering Association
Chicago, IL

www.issea.org

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.



Does Project Performance Stability Exist? A Re-examination of CPI and Evaluation of SPI(t) Stability

April 2008 www.stsc.hill.af.mil 13

Koppelmann. “Sarbanes-Oxley: Does
Compliance Require Earned Value
Management on Projects.” Contracts
Management Apr. 2004: 26-28.

10. Fleming, Quentin, and Joel
Koppelmann. “If EVM Is Good …
Why Isn’t It Used On All Projects?”
Contracts Management Apr. 2004: 26-
28 <www.suu.edu/faculty/christen
send/evms/WhyEVM.pdf>.

11. Fleming, Quentin, and Joel Koppel-
man. Earned Value Project Manage-
ment. 3rd ed. Upper Darby, PA:
Project Management Institute, 2005.

12. Henderson, Kym. “Earned Schedule:
A Breakthrough Extension to Earned
Value Theory? A Retrospective
Analysis of Real Project Data.” The
Measurable News Summer 2003: 13-23
<www.earnedschedule.com/Docs/Ear
ned%20Schedule%20-%20A%20
Breakthrough%20Extension%20to%
20EVM.pdf>.

13. Henderson, Kym. “Further Develop-
ments in Earned Schedule.” The
Measurable News Spring 2004: 15-22
<www.earnedschedule.com/Docs/Fur
ther%20Developments%20in%20Ear
ned%20Schedule.pdf>.

14. Henderson, Kym. “Earned Schedule in
Action.” The Measurable News Spring
2005: 23-30 <www.earnedschedule.
com/Docs/Earned%20Schedule%20
in%20Action.pdf>.

15. Vanhoucke, Mario, and Stephan
Vandevoorde. “A Comparison of
Different Project Duration Forecasting
Methods Using Earned Value Metrics.”
International Journal of Project
Management 24.4 (2006): 289-302
<www.sciencedirect.com>.

16. Vanhoucke Mario, and Stephan
Vandevoorde. “A Simulation and
Evaluation of Earned Value Metrics to
Forecast Project Duration.” Journal of
Operational Research Society 58.10
(2007):1361-1374 <www.palgrave-jour
nals.com>.

17. Witte, Ed. “An Analysis of the
Schedule Performance Index (SPI) in
Units of Time: Overcoming the SPI($)
Limitations to Accurately Portray
Schedule.” Personal e-mail to Walt
Lipke. 15 Apr. 2005.

18. PMI. Practice Standard for Earned
Value Management. PMI, 2004.

19. National Institute of Standards and
Technology Dataplot. Sign Test. 2005
<www.itl.nist.gov/div898/software/
dataplot/refman1/auxillar/signtest.
htm>.

20. Lipke, Walt. “A Study of the Normality
of Earned Value Management
Indicators.” The Measurable News

Dec. 2002: 1-16 <sydney.pmichapters
-australia.org.au/programs/customer/
v_filedown.asp?P=31&FID=8929784
7&FRF=n&>.

21. Zwikael, Ofer, et al. “Evaluation of
Models for Forecasting the Final Cost
of a Project.” Project Management
Journal 31.1 (2000): 53-57.

22. Popp, Michael. “Probability Distri-
butions of CPI at Complete vs. CPI
Today.” Internal NAVAIR Report,
Unpublished, 1996. <sydney.pmichap
ters-australia.org.au/programs/cus
tomer/v_filedown.asp?P=31&FID=7
38016087&FRF=n&>.

23. Coleman et al. “Predicting Final CPI.”
Presentation to the 4th Joint Annual
ISPA/SCEA International Conference,
Orlando, FL, June 2003.

24. Lipke, Walt, et al. “Prediction of
Project Outcome – The Application of
Statistical Methods to Earned Value
Management and Earned Schedule
Performance Indexes.” Publication
pending.

25. Henderson, Kym. “Recent Advances in
Project Prediction Techniques.”
Presentation to the IQPC IT Project

Management Conference, Sydney
Australia, 1 May 2007 <www.earned
schedule.com/Docs/Recent%20
Advances%20in%20Project%20Predic
tion%20Techniques.pdf>.

Notes
1. Unless otherwise stated, all references

to CPI and the SPI(t) refer to the
cumulative values.

2. Project has been used consistently
throughout this article. In the U.S. gov-
ernment, particularly the DoD con-
text, program may be the more appro-
priate term.

3. This calculator has been placed into
the public domain to encourage more
broadly based CPI and SPI(t) stability
research and is freely available from
the ES Web site at <www.earned
schedule.com/Calculator.shtml>.

4. Applying the Sign Test at 0.05 level of
significance means that the test is
being applied at a 95 percent level of
confidence.

About the Authors

Kym Henderson is a
practicing IT project
manager with significant
experience in project
recoveries utilizing sim-
plified EVM techniques.

He has presented at many conferences
internationally and published papers in
various publications and as proceedings
of PMI Global Congresses. Henderson
published the first independent valida-
tion of the ES method in 2003. He is the
Immediate Past Education Director
(2003-2007) of the PMI Sydney Chapter
and is the first non-U.S. national elected
to the board of the PMI College of
Performance Management commencing
office on 1st January 2008. He has a
bachelor of business and a master of
science (computing) from the University
of Technology, Sydney.

P.O. Box 687
Randwick NSW 2031
Australia
Phone: +61 414 428 537
Fax: +61 2 8394 9295
E-mail: kymhenderson

@froggy.com.au

Ofer Zwikael, Ph.D., is
a senior lecturer at the
Victoria Management
School, Victoria Univer-
sity of Wellington, New
Zealand. He also leads

projects and program groups in dozens
of organizations, in Asia and Europe.
Zwikael is an accredited Project
Management Professional, has acted for
two years as a vice president in the
Executive Board of the PMI’s Israeli
chapter, and is currently a director at the
New Zealand PMI Executive Board.

Victoria Management School
Victoria University of Wellington
Rutherford House
23 Lambton Quay
P.O. Box 600
Wellington
New Zealand
Phone: +64 4 4635143
E-mail: ofer.zwikael@vuw.ac.nz



14 CROSSTALK The Journal of Defense Software Engineering April 2008

Development of a plan for executing a
project is a difficult undertaking.

When the plan is being created, a work
flow is envisioned along with constraints
and resource availability. There is a con-
siderable amount of effort invested in
decomposing the constituents of the plan
into manageable components and work
packages. Detailed examination of the
tasks themselves is made to prepare rea-
sonable estimates for their cost and dura-
tion. Oftentimes, planning teams use his-
torical project records, heuristics, and sta-
tistical algorithms to determine best and
worst case probable outcomes.
Furthermore, to assure that the best pos-
sible plan is created, technical experts may
be employed to make the estimates as
accurate as possible.

Before assignments can be made to the
team members of a project, the timing of
their actions must be known along with
their interdependencies. The intricate
mechanism for consolidating all of this
information and making it understandable
to the project team and senior manage-
ment, as well, is the schedule. The schedule
is an embodiment of our best understand-
ing of how to accomplish the project ... a
truly important document. Possibly, the
schedule is the single most important doc-
ument pertaining to the project, and it
likely has more to do with success than
any other aspect.

Well, then, if the planned schedule is
so crucial to project success, it follows that
project managers should do their utmost
to ensure project execution conforms to
it. Assuming the planned schedule is the
most efficient path for executing the pro-
ject, any deviation leads to inefficiency and
very likely other problems such as con-
straint reduced production, idle time, skills
mismatch, and poor quality output, and in
turn, requires rework. Thus, there is an
extremely compelling case for following
the planned schedule.

This article presents a proposed
method for measuring the conformance,
or adherence, for the schedule execution
of a project. Utilizing the method and
measure, the project manager has a better
understanding of how well the execution
follows the sequence and precedence of
the tasks in the baseline schedule. Having
an indicator for schedule adherence provides
additional early warning information for
managers to act upon.

Schedule Performance
Efficiency Versus Schedule
Adherence
What is meant by schedule adherence? Does it
mean that the project is performing such
that objectives are achieved at the time
predicted or planned? Certainly project
managers want to know that interim prod-
ucts are being produced and delivered on
time. This type of schedule performance
indicator can be made a number of differ-
ent ways, such as portion or percent of
milestones, objectives, or interim products
achieved on time. In fact, the EVM
Schedule Performance Indicator (SPI) is
of this type1. However, SPI is much more
resolute than the very coarse measures
mentioned; its increment of measure is
cost – earned and planned. This discus-
sion for SPI is equally applicable to the
time-based schedule performance effi-
ciency indicator from ES, SPI(t)2.

All of these indicators, including SPI
and SPI(t), describe the efficiency of
achieving the plan. However, they do not
provide information about how the prod-
ucts, milestones, objectives, or earned
value were achieved. For example, these
indicators cannot describe whether or not
completion of milestone 2 followed mile-
stone 1. If the milestone schedule indi-
cates that at status period 3 we should
have completed two milestones and we
have completed two, it would appear from
the indicator (milestone percent complet-
ed = 100 percent), that all is well. But what
if the two milestones are numbers one

and three while the second milestone is
still in work? Is there anything possibly
wrong? After all, the project has met its
two-milestone objective.

For the EVM schedule efficiency indi-
cator, SPI, there is no concern as to
whether the earned value (EV) accrued
matches the expectation of the schedule.
In most cases, project managers would
celebrate an SPI = 1.0 because it is so sel-
dom achieved, and consequently would
not question whether the EV accrued is,
in fact, the expected planned value (PV).
Again, the question is raised: Should the pro-
ject manager be concerned with the performance
sequence, i.e., how the achievement occurred?
Does it make any difference?

Over the last 20 years, nearly every
industry experienced several initiatives
intended to improve project performance
and product quality: Statistical Process
Control, Total Quality Management, the
Software Engineering Institute Capability
Maturity Model®, and the International
Organization Standard for Quality
Management Systems 9001. The funda-
mental idea from all of these process
improvement efforts is the following:
Undisciplined execution leads to inefficient perfor-
mance and defective products.

Does this thinking apply to project
plans, too? Of course it does; the planned
schedule describes the execution process.
Therefore, it is not enough to measure the
execution efficiency. Additionally, project
managers (PM) need to know how well
the process is being followed. By main-
taining process integrity, PMs can maxi-
mize the project’s performance and mini-
mize its rework and delivery of defective
products. An indicator for adherence to
the schedule provides the measure needed
by PMs for monitoring and controlling the
project execution.

Measuring and Indicating
Schedule Adherence
The idea for measuring schedule adher-
ence is simply stated in this question: Did

Schedule Adherence:
A Useful Measure for Project Management 

Earned Value Management (EVM) is a very good method of project management. However, EVM by itself cannot pro-
vide information as to how the schedule is being accomplished. Project accomplishment not in accordance with the planned
schedule frequently has adverse repercussions; cost increases and duration is elongated. Thus, managers have a need to more
fully understand project performance. This article utilizes the new practice of Earned Schedule (ES) to discuss a proposed
measure for further enhancing the practice of EVM. The measure, Schedule Adherence, provides additional early warning
information to project managers, thereby enabling improved decision making and enhancing the probability of project success.

Walt Lipke
PMI Oklahoma City Chapter

® Capability Maturity Model is registered in the U.S. Patent
and Trademark Office by Carnegie Mellon University.



April 2008 www.stsc.hill.af.mil 15

the accomplishment match exactly the expectation
from the planned schedule? This is not the
same as the preceding discussion of
schedule performance efficiency, where
the volume of actual work accomplished
is compared to the expected volume from
the schedule. Schedule adherence is a
more restrictive measure, and it is inde-
pendent from performance efficiency.

A recent enhancement to EVM, ES,
provides a means to measure schedule
adherence. ES is derived from two mea-
sures of EVM, PV, and EV [1]. The accu-
mulated planned value from the project
start to its planned completion is the per-
formance measurement baseline (PMB)
[2]. ES is the time duration associated with
the PMB where the PV is equal to the EV
accrued.

The concept of ES is illustrated by
Figure 1. Arrow A projects the accrued
value of EV onto the PMB to identify the
point at which PV equals EV. Arrow B
identifies the time at which PV equals the
EV accrued, i.e., the planned duration
earned or ES. The time at which the EV
accrued appears is period seven. Whereas
ES is determined to be the duration of
five periods; i.e., the time measure from
the PMB where PV is equal to the EV
accrued at Time Now, or Actual Time
(AT).

Two comparative measures, SVt and
SVc, are shown in the diagram to illustrate
the difference between the cost-based and
time-based indicators of EVM and ES,
respectively. The traditional EVM sched-
ule variance is SVc, while the time-based
schedule variance from ES is SVt

3. From
the numbers shown in the diagram, SVt

can be easily computed: SVt = ES – AT =
5-7 = -2. Assuming the units are months,
the project is two months behind its
planned schedule.

The performance expectation for the
planned schedule is embodied in the PMB.
This is a consequence of the PMB being
the result from summing time phased PV
across all tasks in the schedule. Figure 2 is
used to illustrate the relationship. The fig-
ure shows a network schedule at the top
with the PV curve beneath it.

The connection between EVM and
the schedule provided by ES is remark-
able. Regardless of the project’s actual
position in time, we have information
describing the portion of the planned
schedule, which should have been accom-
plished. That is, for a claimed amount of
EV at a status point AT, the portion of
the PMB which should be accomplished is
identified by ES. Another way of describ-
ing this relationship is the value of ES
indicates where the task performance of

the project should be for that amount of
duration of the planned schedule. As
shown by Figure 2, specific tasks make up
that portion of the schedule. The darker
shaded areas of the task blocks indicate
the portions planned to be completed. If
the schedule is adhered to we will observe
in the actual performance the identical
tasks at the same level of completion as
the tasks which make up the plan portion
identified by ES. By adhering to the
planned sequence of tasks, the manager is
assured during project execution that the
predecessors to the tasks in work are com-
plete.

It is more than likely the project is not
performing synchronously with the sched-
ule; EV is not being accrued in accordance
with the plan. As seen in Figure 3 (see
page 16), the accumulated EV is the same
quantity depicted in Figure 2, but its task

distribution is different. Figure 3 is a
graphical illustration of the earlier discus-
sion of the reasons for process discipline.
The lagging performance for tasks to the
left of ES indicates the possibility of a
constraint or impediment. Performance
may be lagging behind the expectation due
to something preventing it from occur-
ring. The EV indicated to the right of ES
shows tasks performed at risk; they will
likely have significant rework appearing
later in the project.

Both sets of tasks, lagging and ahead,
cause poor efficiency. Of course, for the
lagging tasks, impediments and con-
straints make progress more difficult.
Concentrating management efforts on alleviating
the impediments and constraints will have the
greatest positive impact on project performance. 

The darkened tasks to the right of ES
indicate performance resulting from

}

$$

Time

PV

BAC

PD

EV

ES AT

SVt

$$

Time

PV

BAC

PD

EV

ES AT

1

6

8
5

43

72

$

1 2 3 4 5 6 7 8 9 10

AT

ΣEV

ΣPV

B

SVcA

SVt

}

The idea is to determine the
time at which the EV accrued
should have occurred.

ES

Time Now

Ε

SVt

Figure 1: ES Concept

}

$$

Time

PV

BAC

PD

EV

ES AT

SVt

1 72

$

1 2 3 4 5 6 7 8 9 10

AT

ΣEV

ΣPV

B

SVcA

SVt

}

The idea is to determine the
time at which the EV accrued
should have occurred.

ES

Time Now

Ε

Figure 2: ES Connects EV to Schedule

Schedule Adherence: A Useful Measure for Project Management 



impediments and constraints or poor
process discipline. Frequently, they are
executed without complete information.
The performers of these tasks must nec-
essarily anticipate the inputs expected
from the incomplete preceding tasks; this
consumes time and effort and has no
associated EV. Because the anticipated
inputs are very likely misrepresentations
of the future reality, the work accom-
plished (EV accrued) for these tasks usu-
ally contains significant amounts of
rework. Complicating the problem, the
rework created for a specific task will not
be recognized for a period of time. The
need for rework will not be apparent until
all of the inputs to the task are known or
its output is recognized to be incompatible
with the requirements of a subsequent
task.

This conceptual discussion leads to the
measurement of schedule adherence. By
determining the EV for the actual tasks
performed congruent with the project
schedule, a measure can be created. The
adherence to schedule characteristic, P, is
described mathematically as a ratio:

P = ΣΣ EVj / ΣΣ PVj

PVj represents the PV for a task asso-
ciated with ES. The subscript j denotes the
identity of the tasks from the schedule
which comprise the planned accomplish-
ment. The sum of all PVj is equal to the
EV accrued at AT. EVj is the EV for the j
tasks, limited by the value attributed to the
planned tasks, PVj.

Consequently, the value of P repre-
sents the proportion of the EV accrued
which exactly matches the planned sched-
ule.

Recall, the question with which we
began, did the accomplishment match exactly the
expectation from the schedule? The P-Factor
answers the question and thus is the per-
formance indicator of schedule adherence
sought after.

A characteristic of the P-Factor is that
its value must be between zero and one; by
definition, it cannot exceed one. A second
characteristic is that P will exactly equal
1.0 at project completion. P equal to zero
indicates that the project accomplishment
thus far is not, at all, in accordance with
the planned schedule. Conversely, P equal
to one indicates perfect conformance.

When the value for P is much less than
1.0, i.e., poor schedule adherence, the pro-

ject manager has a strong indication the
project is experiencing an impediment, the
overload of a constraint, or there is poor
process discipline. Conversely, when the
value of P is very close to 1.0, the PM can
feel confident the schedule is being fol-
lowed and that milestones and interim
products are occurring in the proper
sequence. The PM thus has an indicator
derived from ES which further enhances the
description of project performance portrayed by
EVM alone.

Example Application
Table 1 contains notional data that relates
to Figure 3. The task numbers from the
table are identified, as well, in the network
diagram of the figure. The total PV for
the hypothetical project is 62 units. The
total EV accrued at AT is 40 units; the
task distribution of EV is beneath the col-
umn heading, EV at AT. The task distrib-
ution of PV for the ES duration is shown
in the PV at ES column.

By calculating the difference, EV
minus PV, between the two distribution
columns, we can determine which tasks
may have impediments or where a con-
straint has developed. Those tasks are
identified by the negative values in the
EV-PV column and recorded as a possible
impediment or constraint (I/C) in the last
column of Table 1; they are tasks 2, 4, and
6. The PM should investigate those three
tasks for removal of impediments or alle-
viation of the constraints.

Should no impeding problem be
found, the PM has reason to suspect inap-
propriate performance by members of the
project team, i.e., poor process discipline.
It may be discovered that a person
assigned one of the tasks identified is
insufficiently skilled or trained. This never
happens, does it? The employee, in order to
maintain a satisfactory efficiency for his
performance review, executed a down-
stream task because it was something he
knew how to do. (For this example, the
employee is compelled to do the wrong thing. Let
us hope that management fully examines the prob-
lem and recognizes its own culpability.)

The column, EV-PV, also indicates
positive differences for three tasks: 5, 7,
and 8. These tasks are not being per-
formed synchronously with the schedule
and are at risk of generating rework, as
indicated by the letter R recorded in the
table. It is obvious from Figure 3 that
tasks 7 and 8 are at risk because some or
all of the required inputs to them are
absent. However, the risk of task 5 is not
so obvious; all of its required inputs are
available. With respect to ES, it should be
only partially complete. Task 5 completion

Project Tracking

16 CROSSTALK The Journal of Defense Software Engineering April 2008

}

$$

Time

PV

BAC

PD

EV

ES AT

SVt

$$

Time

PV

BAC

PD

EV

ES AT

1

6

8
5

43

72

$

1 2 3 4 5 6 7 8 9 10

AT

ΣEV

ΣPV

B

SVcA

SVt

}

The idea is to determine the
time at which the EV accrued
should have occurred.

ES

Time Now

Ε

SVt

Figure 3: Actual Distribution of EV

CPI          SPI(t)          P-Factor          P Curve Fit

Task PV PV at ES EV at AT EV – PV I/C or R 

    

Total 62 40 40 0 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Percent Complete

In
d

ex
 V

al
u

e

1.2

1.1

1.0

0.9

0.8

1 10 10 10 0 
2 12 9 5 -4 I/C 
3 10 10 10 0 
4 5 5 3 -2 I/C 
5 5 2 5 +3 R 
6 8 4 3 -1 I/C 
7 7 0 1 +1 R 
8 5 0 3 +3 R 

Table 1: Schedule Adherence Example



Schedule Adherence: A Useful Measure for Project Management 

April 2008 www.stsc.hill.af.mil 17

is not synchronous with the planned exe-
cution at the ES duration. Rework can be
generated in this case as well – it is never
wise to be too far out in front.

To further explain, as the project pro-
gresses the detail for task accomplishment
becomes much clearer. Oftentimes subtle
changes to task requirements are made
due to the learning gained during the
development process from the prior task
accomplishment. By working ahead, the
developer unknowingly makes the pre-
sumption that his work is unaffected by
the other facets of the project. When this
occurs, the task worker is not performing
synchronously with the plan and the risk
of rework is created.

What is the value of the P-Factor for
this example? From review of the PV at
ES column, the tasks to be included in the
calculation are 1 through 6; the sum of PV
at ES equals 40. The sum of the EVs in
agreement with the PVs is found from the
values of tasks 1 through 6 in the EV at
AT column. The sum of the values for
these tasks is 36. However, recall task 5 is
three units ahead of where it should be
with respect to the amount of PV planned
for that point in time. Subtracting the
three units, the EV sum in agreement with
the schedule equals 33. As can be seen,
another way to calculate the EV in agree-
ment is to add the sum of the negative
entries in the EV–PV column to the total
EV accrued; i.e., 40 + (- 7) = 33. P can
now be calculated as follows:

P = ΣΣ EVj / ΣΣ PVj = 33 / 40 = 0.825

Thus, approximately 80 percent of the
execution is in conformance with the
schedule.

Let us presume all of the claimed
accomplishment not in schedule confor-
mance requires rework, seven units. For
this worst case, nearly 18 percent of the
claimed EV must be re-accomplished for
the project to complete satisfactorily.
Unless this project has considerable
reserves, successful completion within the
allocated resources is very unlikely. It is
obvious; the manager for this project has
work to do. However, without the P-
Factor indicator and the analysis, it is not
so obvious as to what he should investi-
gate and take action to correct.

Real Data
Figure 4 is a graph of the indicators, cost
performance index (CPI), SPI(t), and the
P-Factor from real project data. For the
figure, CPI is the CPI from EVM and the
Percent Complete of the x-axis is deter-
mined from EV divided by the Budget at

Completion (BAC) [1]. As you can see, the
schedule adherence (P-Factor) is extreme-
ly high, even from the beginning; at 20
percent complete, P is equal to 0.93. The
fact that the P-Factor is very nearly 1.0
says that the precedence of the schedule is
followed very closely throughout the peri-
od of execution shown.

Also observed is the curve fit of the P-
Factor data points. The curve fit is an illus-
tration of the previous discussion of the
behavior of P: as the project percent com-
plete increases, in general the value of P
will approach 1.0; at completion, P = 1.0.
This behavior is observed with the curve
fit line.

The plots of CPI and SPI(t) indicate a
very high performing project; CPI hovers
around 1.05, while SPI(t) is generally
greater than 0.98. The forecast for the
project outcome is expected to complete
under budget and slightly past its planned
completion date. A logical conjecture
from the comparison of the indicators is
that when the planned schedule is closely
followed, output performance is maxi-
mized, and the project has the greatest
opportunity for success. In other words,
when P is a high value, we can expect CPI
and SPI(t) to be high, as well. Although
this relationship needs verification from
further research, the rationale appears rea-
sonable.

Summary
ES is a measure shown over the last four
years of application and research exami-
nation to provide reliable schedule perfor-
mance indicators, further enabling dura-
tion and completion date forecasting. In
this article, the application of ES is

extended, thereby facilitating identifica-
tion of those tasks which should have
been accomplished for the EV accrued.
From the comparison of the actual distri-
bution of the EV to its planned distribu-
tion, it is shown that useful information is
available to project managers concerning
possible impediments or constraints along
with the identification of potential future
rework.

The measure for indicating how well
the project is following its planned sched-
ule is Schedule Adherence, i.e., the P-
Factor. Adhering to the planned sequence
of tasks, assures that the predecessors to
the tasks in work are complete thereby
minimizing the potential for rework. The
P-Factor enhances project control capabil-
ity by providing additional early warning
information. When employed with SPI(t)
from ES and CPI from traditional EVM,
the P-Factor yields more complete project
performance information. In turn, the
added measure enhances management
decision making, and the probability for
successful project outcomes.

Final Remarks
Some practitioners of EVM hold to the
belief that schedule analysis can be
accomplished only through detailed exam-
ination of the network schedule. They
maintain the understanding and analysis
of task precedence and float within the
schedule cannot be accounted for by an indicator.
However, detailed schedule analysis is a
burdensome activity and if performed
often can have disrupting effects on the
project team.

ES offers calculation methods yielding
reliable results, which greatly simplify final

CPI          SPI(t)          P-Factor          P Curve Fit

Task PV PV at ES EV at AT EV – PV I/C or R 

    

Total 62 40 40 0 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Percent Complete

In
d

ex
 V

al
u

e

1.2

1.1

1.0

0.9

0.8

1 10 10 10 0 
2 12 9 5 -4 I/C 
3 10 10 10 0 
4 5 5 3 -2 I/C 
5 5 2 5 +3 R 
6 8 4 3 -1 I/C 
7 7 0 1 +1 R 
8 5 0 3 +3 R 

Figure 4: Project Management Indicators



duration and completion date forecasting.
Furthermore, as described in this article,
the development of ES has led to a new
and potentially powerful indicator of
schedule performance, i.e., Schedule
Adherence.

Future research of the proposed
Schedule Adherence Indicator is encour-
aged. To promote experimentation and
usage of the measure, the P-Factor calcu-
lator is made available for download at
<www.earnedschedule.com/Calculator.
shtml>.u

References
1. Lipke, W. “Schedule Is Different.” The

Measurable News Summer 2003: 31-
34.

2. Practice Standard for Earned Value
Management. Newtown Square, PA:
Project Management Institute, 2005.

Notes
1. The schedule performance indicator

from EVM is symbolized by SPI. SPI
is equal to the EV divided by the PV at
a specific time; i.e., SPI = EV / PV [1].

2. The time-based schedule performance
indicator from ES is SPI(t) and is equal
to the earned schedule divided by the
actual duration (or actual time, AT);
i.e., SPI(t) = ES / AT [2].

3. The EVM and ES definitions of SVc

and SVt, respectively, are as follows:
SVc = EV – PV; SVt = ES – AT [1, 2].

Project Tracking

18 CROSSTALK The Journal of Defense Software Engineering April 2008

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA 

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:________________________________________________________________________

RANK/GRADE:_____________________________________________________

POSITION/TITLE:__________________________________________________

ORGANIZATION:_____________________________________________________

ADDRESS:________________________________________________________________

________________________________________________________________

BASE/CITY:____________________________________________________________

STATE:___________________________ZIP:___________________________________

PHONE:(_____)_______________________________________________________

FAX:(_____)_____________________________________________________________

E-MAIL:__________________________________________________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JAN2007 c PUBLISHER’S CHOICE

FEB2007 c CMMI

MAR2007 c SOFTWARE SECURITY

APR2007 c AGILE DEVELOPMENT

MAY2007 c SOFTWARE ACQUISITION

JUNE2007 c COTS INTEGRATION

JULY2007 c NET-CENTRICITY

AUG2007 c STORIES OF CHANGE

SEPT2007 c SERVICE-ORIENTED ARCH.

OCT2007 c SYSTEMS ENGINEERING

NOV2007 c WORKING AS A TEAM

DEC2007 c SOFTWARE SUSTAINMENT

JAN2008 c TRAINING ANDEDUCATION

FEB2008 c SMALLPROJECTS, BIG ISSUES

MAR2008 c THE BEGINNING

To request back issues on topics not
listed above, please contact <stsc.
customerservice@hill.af.mil>.

Development of Safety Critical Systems
October 2008

Submission Deadline: May 16, 2008

Interoperability
November 2008

Submission Deadline: June 13, 2008

Data and Data Management
December 2008

Submission Deadline: July 18, 2008
 

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.stsc.hill.af.mil/crosstalk>.  We accept article submissions on all software-related topics at any time,

along with Letters to the Editor and BackTalk. Also, we now provide a link to each monthly theme, giving
greater detail on the types of articles we're looking for <www.stsc.hill.af.mil/crosstalk/theme.html>.

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others, 
CrossTalk can get the word out.  We are specifically looking for articles on software- 
related topics to supplement upcoming theme issues.  Below is the submittal schedule 
for three areas of emphasis we are looking for:

CrossTalk can get the w

ord out. 

related topics to suppleme

nt upcoming theme issues.  Below is the submittal schedule 

for three areas of emphasis 

we are looking for:

Please follow the Author Guidelines for CrossT

alk
<www.stsc.hi

ll.af.mil/crosstalk>.  We accept article submiss

ions on all software-related topics at any time,
along with L

etters to the Editor and BackTalk. Also, we n

ow provide a link to each monthly theme, giving

About the Author

Walt Lipke retired in
2005 as deputy chief of
the Software Division at
Tinker Air Force Base
and has more than 35
years experience in the

development, maintenance, and manage-
ment of software for automated testing
of avionics. During his tenure, the divi-
sion achieved several software process
improvement milestones, including the
coveted Software Engineering Institute/
Institute of Electrical and Electronics
Engineers award for Software Process
Achievement. Lipke has published sever-
al articles and presented at conferences
internationally on the benefits of SPI and
the application of EVM and statistical
methods to software projects. He is the
creator of the Earned Schedule® tech-
nique, which extracts schedule informa-
tion from EV data. Lipke has a master’s
degree in physics, and is a member of the
physics honor society, Sigma Pi Sigma. In
2007, Lipke received the PMI Metrics
Specific Interest Group Scholar Award
and the PMI Eric Jenett Award for
Project Management Excellence.

1601 Pembroke DR
Norman, OK 73072
Phone: (405) 364-1594
E-mail: waltlipke@cox.net

© 2003 by Walt Lipke. All Rights Reserved.



April 2008 www.stsc.hill.af.mil 19

Software testing is a fundamental soft-
ware engineering activity critical to a

successful development effort. In fact, an
increasingly popular approach to software
development is that of test-driven develop-
ment in which tests are identified and doc-
umented prior to implementation of the
code [1]. The test-driven approach to
development places an emphasis on the
quality of the resulting product by estab-
lishing completeness and correctness cri-
teria early. A major challenge to any testing
effort is that one must identify a set of
tests that are effective at finding defects
while keeping the resources associated
with applying those tests within project
cost and schedule constraints.

The following is an overview of BVA,
a systematic methodology for identifying
tests to apply. In the following discussion,
the term test case refers to “a set of inputs,
execution conditions, and expected results
developed for a particular objective, such
as to exercise a particular program path or
to verify compliance with a specific
requirement.” A test is defined as either “a
set of one or more test cases” or as “the
execution of the test cases.” A fault is “an
incorrect step, process, or data definition
in a computer program,” and a failure is the
“inability of a system or component to
perform its required functions within
specified performance requirements [2].”
Thus, a primary goal of software testing is
to identify failures, which indicate the
presence of one or more faults [3].

Overview of BVA
BVA is a black-box approach to identify-
ing test cases. In black-box testing, test
cases are selected based upon the desired
product functionality as documented in
the specifications without consideration
of the actual internal structure of the pro-
gram logic [4]. A fundamental assumption
in BVA is that the majority of program
errors will occur at critical input (or out-
put) boundaries, places where the
mechanics of a calculation or data manip-
ulation must change in order for the pro-

gram to produce a correct result [3].
An example that illustrates the general

concept of boundary values would be a
program that calculates income tax for a
given income. In a progressive income tax
scheme, the tax rate applied increases
from low-income brackets to high-income
brackets. In this case, the critical input
boundaries would be the set of incomes at
which the applied tax rate should change
along with any minimum or maximum
extremes of the income value. Thus, the
set of boundary incomes defines the lim-
its of each tax bracket.

Test Case Selection Using
BVA
The set of test cases identified by BVA
depends upon both the reliability require-
ments of the software under test and the
underlying assumptions on the likelihood
of single versus multiple range checking

faults. The following discussions of single-
variable and multi-variable BVA are derived
from the BVA taxonomy and discussion
presented in [3].

Single-Variable BVA
The baseline procedure for BVA begins by
identifying the boundary values, typically
from the input point of view. All of these
boundary values will be incorporated into
the set of test cases. In addition to those
values, values near the boundaries will be
tested. These boundary-adjacent values
will help to exercise the program’s
bounds-checking logic. For example,
when testing the range of a value in a
branching or looping statement, the devel-
oper may use a less-than operator, ‘<,’
when the correct operator should have
been a less-than-or-equal to operator,
‘<=,’ or a greater-than operator, ‘>,’ which
is adjacent to the less-than operator on
most keyboard layouts. Such errors would

A Review of Boundary Value Analysis Techniques

Dr. David J. Coe
The University of Alabama in Huntsville

Software testing is an essential element of any software development effort. Developers must have some means of selecting tests
to evaluate the completeness and quality of product produced. This article reviews Boundary Value Analysis (BVA), a func-
tional testing methodology that can assist in the identification of an effective set of tests.

Software Engineering Technology

a a+      b               c- c
baseline

a- a a+         b          c- c c+
baseline robust augmentation

d- d d+   e    f- f f+ g        h- h h+
baseline robust augmentation

N

N

M

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

Figure 3: Single-Variable, Two-Range Test Cases Identified by Robust BVA (Highlighted areas
indicate the two subranges of valid values of M)

a a+      b               c- c
baseline

a- a a+         b          c- c c+
baseline robust augmentation

d- d d+   e    f- f f+ g        h- h h+
baseline robust augmentation

N

N

M

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

Figure 2: Single-Variable, Single-Range Baseline Test Cases Augmented With Robustness Tests
(shaded area indicates valid values of the variable N)

a a+      b               c- c
baseline

a- a a+         b          c- c c+
baseline robust augmentation

d- d d+   e    f- f f+ g        h- h h+
baseline robust augmentation

N

N

M

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

Figure 1: Baseline BVA Test Cases Identified for Single-Variable, Single-Range Example (Shaded
area indicates valid values of the variable N)



result in code that compiles but executes
incorrectly under certain conditions. To
test for these types of errors, values adja-
cent to the boundary values must be
included in the set of test cases. In addi-
tion to the boundary and boundary-adja-
cent values, the baseline BVA procedure
includes some nominal value of input (or
output) in the set of test cases. The base-
line BVA procedure is best illustrated by
the following example.

Consider a program with a single input
variable N that has an output defined only
for values of N in the range a ≤ N ≤ c.
The set of test cases selected would be at
minimum the set of values Nbaseline = {a, a+,
b, c-, c} where a+ is a value just greater
than a, c- is a value just less than c, and the
value b is some nominal value that lies
between a+ and c-. In this example, the
baseline BVA procedure identifies five test
cases. As graphed on the number line in
Figure 1 (see page 19), the test cases
selected under the baseline procedure do
not exceed the allowable range of inputs
for the variable N.

If error handling is critical to the soft-
ware under test, then one augments the set
of test cases identified by the baseline
BVA procedure to include robustness
tests, that is, values outside the allowable
range. The baseline tests identified above
are augmented with the values {a-, c+}
where a- is a value just below the mini-
mum acceptable value a and c+ is a value
just above the maximum acceptable value
c. The inclusion of the values {a-, c+} in
the set of test cases should force execu-
tion of any exception handler or defensive
code. In this single-input, single-range
example, robust BVA identifies a total of
seven test cases as shown in Figure 2 (see
previous page) where Nrobust = {a-, a, a+, b,
c-, c, c+}.

The baseline BVA or robust BVA pro-
cedures may also be applied in situations
where an input may have multiple sub-
ranges. Consider a single input M with two

adjacent subranges where range #1 is
given by d ≤ M < f and range #2 is given
by f ≤ M ≤ h. The set of test cases would
be the union of the test cases identified by
applying the BVA procedure to each indi-
vidual subrange. So, the union of test cases
resulting from the application of baseline
BVA to each subrange individually is given
by the following:

Mbaseline = {d, d+, e, f-, f} u {f, f+, g, h-, h} 
= {d, d+, e, f-, f, f+, g, h-, h}

Application of robust BVA augments
Mbaseline with the extreme values {d-, h+} to
yield Mrobust = {d-, d, d+, e, f-, f, f+, g, h-, h,
h+} as illustrated in Figure 3. The addition
of multiple subranges clearly increases the
total number of test cases identified. For
two adjacent subranges of a single vari-
able, baseline BVA identified nine test
cases and robust BVA identified 11 test
cases total.

Multi-Variable BVA
The BVA test case selection procedure for
multi-variable problems also requires con-
sideration of fault likelihood, what I refer
to as a fault model. Under the single-fault
model, it is assumed that a failure is the
result of a single fault due to the low
probability of two or more faults occur-
ring simultaneously [3]. For the multiple-
fault model, one assumes that the likeli-
hood of multiple simultaneous faults is no
longer insignificant, and thus additional
test cases must be selected to address situ-
ations such as erroneous range checking
on multiple variables simultaneously.

Drawing from our previous single vari-
able examples, assume the single-fault
model for a problem that has two inputs,
N and M, with values of N in the allow-
able range a ≤ N ≤ c and where allowable
values of M span range #1, given by d ≤
M < f, and range #2, given by f ≤ M ≤ h.
From our previous discussion, the base-
line single variable test cases identified for

N and M respectively are the following:

Nbaseline = {a, a+, b, c-, c}

and

Mbaseline = {d, d+, e, f-, f, f+, g, h-, h}

Under the single-fault assumption,
multi-variable BVA test cases are selected
that exercise the boundaries of one vari-
able while the other variables are held at a
nominal value. The final set of test cases
selected is the union of all test cases iden-
tified as this procedure is applied to each
individual input in turn. In the following
example, I have chosen to apply this pro-
cedure to each subrange of each variable
in turn to produce a symmetric solution.

Since we have assumed that there are
two inputs in this problem, the set of test
cases will consist of ordered pairs of
inputs (m,n) such that n is a member of
Nbaseline and m is a member of Mbaseline. Figure
4A shows a graph of the nine test cases
identified assuming that n is held to its
nominal value b while m varies across the
members of Mbaseline. The graph in Figure
4B shows the 10 test cases identified in
which m is held to its nominal value, e or g,
while n varies across the members of
Nbaseline. Figure 4C illustrates the union of
these sets of test cases. Note that due to
the selection of (e,b) and (g,b) twice, a total
of 17 test cases have been identified
instead of 19.

For robustness testing, one applies the
same procedure starting with the values
previously identified in the sets Mrobust and
Nrobust. Note that under the single-fault
model, robustness testing adds only six
additional test cases to the 17 baseline test
cases for a total of 23 test cases. These
additional tests are identified in Figure 4C.

Under the multiple-fault assumption,
additional test cases must be selected to
detect multiple, simultaneous faults such
as erroneous range checking on two vari-

20 CROSSTALK The Journal of Defense Software Engineering April 2008

a a+      b               c- c
baseline

a- a a+         b          c- c c+
baseline robust augmentation

d- d d+   e    f- f f+ g        h- h h+
baseline robust augmentation

N

N

M

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

Figure 4 A,B,C: Single-Fault, Baseline, and Robust Test Cases (A) assuming N is at its nominal value, (B) assuming M is at its nominal values for each
subrange, and (C) the set of all test cases identified (derived from [3])

a a+      b               c- c
baseline

a- a a+         b          c- c c+
baseline robust augmentation

d- d d+   e    f- f f+ g        h- h h+
baseline robust augmentation

N

N

M

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

a a+      b               c- c
baseline

a- a a+         b          c- c c+
baseline robust augmentation

d- d d+   e    f- f f+ g        h- h h+
baseline robust augmentation

N

N

M

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

Software Engineering Technology



A Review of Boundary Value Analysis Techniques

April 2008 www.stsc.hill.af.mil 21

ables at the same time. The multiple-fault
BVA procedure again starts with the sets
Mbaseline and Nbaseline if bounds checking is not
critical or Mrobust and Nrobust if bounds check-
ing is a high priority. To select BVA test
cases assuming that multiple simultaneous
faults are likely, one computes the
Cartesian product Nbaseline x Mbaseline for the
baseline multiple-fault test cases or Mrobust x
Nrobust for the multiple-fault, i.e., worst-case
test cases [3].

Given two sets M and N, the Cartesian
product of M and N is defined as follows:

M x N = {(m,n) | m ∈∈ M ^ n ∈∈ N}

where (m,n) denotes an ordered pair [5].
In other words, M x N is the set that con-
sists of all possible ordered pairings of an
element from set M with an element of set
N. So, if set M contains x elements and set
N contains y elements, the resulting set M
x N will contain a total x*y total elements.

Figure 5 depicts the baseline and
robust BVA test cases identified for our
sample problem assuming the multiple-
fault model. Note the significant increase
in the total number of tests identified.
Forty-five baseline test cases were identi-
fied for this problem plus an additional 32
for worst-case robustness testing.

Table 1 summarizes the number of test
cases identified versus various reliability
requirements and fault model assump-
tions. The multiple-fault assumption sig-
nificantly increases the total number of
tests required, especially in situations
where a variable of interest has multiple
ranges. Under the single-fault assumption,
the incorporation of robustness tests, even
in the situation where a variable has multi-
ple ranges, results in a modest increase in
the total number of test cases required.

Discussion
From the previous review it is clear that
BVA has several advantages: The mechan-
ical nature of the procedure and the sym-
metry of the tests identified make the
BVA procedure easy to remember and
use, especially given that critical input
boundaries are often already explicitly
identified in the requirements. With BVA,
one can adjust the number of test cases
identified and, thus, the resources expend-
ed on testing effort, depending upon the
robustness demands of the product.

BVA also serves as an introduction to
other test techniques. Discussions of BVA
in the literature are often intermingled
with a related black-box technique known
as Equivalence Partitioning (EP), which
utilizes the boundary values in an attempt
to define partitions or sets of test cases

that are equivalent in the sense that all test
cases grouped within a particular partition
would reveal the presence of the same set
of defects and likewise fail to detect other
defects. In its simplest form, once the par-
titions are identified, the set of test cases
selected is one representative test case
from each partition. A distinct advantage
of the EP technique is that the total num-
ber of test cases is significantly smaller
than the set of test cases identified
through BVA. In fact, the set of test cases
identified by EP can be a subset of those
identified by BVA, and researchers have
exploited this fact to reduce the total num-
ber of test cases identified in merged
BVA-EP schemes.

Studies show, however, that BVA can
be effective at identifying failures. In [6],
Reid investigated the effectiveness of ran-
dom testing, equivalence partitioning, and
boundary value analysis techniques.

According to his results, the probability
that BVA would detect a fault was more
than six times higher than random testing
and more than twice as high as equiva-
lence partitioning. The cost for this
increased effectiveness was additional test
cases, on the order of two to three times
the number of test cases as equivalence
partitioning depending upon the particular
variations of the techniques employed.

Other studies have compared function-
al, structural, and code reading test
methodologies. In structural testing, test
cases are selected to exercise specific pro-
gram elements such as statements, branch-
es, or paths through a code segment. For
example, to achieve 100 percent statement
coverage, the set of test cases identified
must force execution of each program
statement at least once. For 100 percent
branch coverage, the set of test cases iden-

tified must force each branch option to
execute at least once. For code reading,
individuals were given the source code and
asked to work backwards towards a specifi-
cation for that program by successively
grouping subprograms into logical mod-
ules until an understanding of the overall
functionality was achieved. Failures were
detected by comparing the actual specifica-
tion to that derived by the code reader.

Basili and Selby [7] studied the relative
effectiveness of a combined BVA and EP
functional testing approach against 100%
statement coverage structural testing and
code reading. Among professional pro-
grammers, they found that code reading
detected the most faults followed by func-
tional testing and then structural testing.
The average maximum statement coverage
achieved by both the functional and struc-
tural testers was 97 percent yet the func-
tional testing approach detected more
faults than did structural testing in this
study. It was also noted that the number of
faults detected varied with the type of soft-
ware tested, and that the testing techniques
tended to detect different types of faults.

The relative effectiveness of a com-
bined BVA and EP functional testing tech-
nique, 100% branch coverage structural
testing, and code reading were compared in
[8]. This study also observed that the effec-
tiveness of the techniques varied with both
the nature of the programs and of the
faults themselves. Most importantly, this
study determined that the use of two or
more test techniques together, such as
functional testing and code reading, was
more effective in general than any single
methodology since the techniques were

Figure 5: Multiple-Fault, Baseline, and Robust
Tests (derived from [3])

Figure 1:  Multiple-fault, baseline and robust tests (derived from [3]). 

Assumed Fault ModelNumber of Tests Identified 
Single-Fault Multiple-Fault

Baseline 17 45Reliability 
Requirement Robust 23 77

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

Figure 1:  Multiple-fault, baseline and robust tests (derived from [3]). 

Assumed Fault ModelNumber of Tests Identified 
Single-Fault Multiple-Fault

Baseline 17 45Reliability 
Requirement Robust 23 77

d- d d+       e         f- f f+  g        h- h h+

baseline robust augmentation

M

c+
c
c-

b

a+
a
a-

N

Table 1: Number of Test Cases Identified for Two-Variable BVA Problem

“With BVA, one can
adjust the number of

test cases identified and,
thus, the resources

expended on testing
effort ...”



essentially complementary [8].

Conclusions
The BVA technique provides a systematic
procedure for evaluating the completeness
and quality of a software product. While
some may find excessive redundancy in the
set of test cases generated by boundary
value analysis, I have found that the sym-
metry and mechanical nature of BVA help
to make the procedure both easier to teach
at the undergraduate level and easy to
remember and apply in practice. BVA also
provides a basis for learning other tech-
niques, in particular, equivalence partition-
ing, and it is effective as a functional testing
technique for identifying failures. Empirical
studies show, however, that a combination
of functional, structural, and/or code read-
ing techniques is generally more effective
than relying upon any single methodology
since the effectiveness of the techniques
vary with both the type of code being test-
ed and the nature of the faults.u

References
1. Schach, Stephen R. Object-Oriented

and Classical Software Engineering.
7th ed., McGraw Hill, 2007.

2. IEEE Standard Glossary of Software
Engineering Terminology. IEEE
Standard 610.12-1990.

3. Jorgensen, Paul C. Software Testing: A
Craftman’s Approach. 2nd ed. CRC
Press, 2002.

4. Perry, William E. Effective Methods
for Software Testing. 3rd ed. Wiley
Publishing, 2006.

5. Beyer, William H. CRC Standard
Mathematical Tables. 25th ed. CRC
Press, 1981.

6. Reid, S.C. 1997. An Empirical Analysis
of Equivalence Partitioning, Boundary
Value Analysis and Random Testing.
Proc. of the 4th International
Symposium on Software Metrics 05-
07 Nov. 1997, Washington, D.C.:
IEEE Computer Society, 1997.

7. Basili, Victor R., and Richard W Selby.
“Comparing the Effectiveness of
Software Testing Strategies.” IEEE
Trans. on Software Engineering 13.12
(1987): 1278-1296.

8. Wood, M., M. Roper, A. Brooks, and J.
Miller. Comparing and Combining
Software Defect Detection Tech-
niques: A Replicated Empirical Study.
ACM SIGSOFT Software Engineering
Notes, Proc. of the 6th European con-
ference held jointly with the 5th ACM
SIGSOFT International Symposium
on Foundations of Software Engi-
neering ESEC ’97/FSE-5, 22.6 (1997):
262-277.

Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering April 2008

About the Author

David J. Coe, Ph.D., is
an assistant professor in
the department of elec-
trical and computer engi-
neering at the University
of Alabama in Hunts-

ville where he teaches undergraduate and
graduate courses in C++ programming,
data structures, and software engineer-
ing. He has consulted locally in the areas
of software engineering and software
process. Coe has an undergraduate de-
gree in computer science from Duke
University, and a master of science
degree in electrical engineering and doc-
torate degree in electrical engineering
from the Georgia Institute of Technology.

The University of Alabama
in Huntsville
Department of Electrical and 
Computer Engineering
217-F Engineering BLDG
Huntsville, AL 35899
Phone: (256) 824-3583
E-mail: coe@ece.uah.edu

Time. Money. Process.

Our goal at CrossTalk has always been to inform and educate
you – our readers – on software engineering best practices,
processes, policies, and other technologies. As a free journal,

your comments are the lifeblood of our existence. If you find that
CrossTalk saves you time and money, has improved your

processes, has helped save your project, or has made your life
easier, let us know. We want to hear your stories!

SShhaarree YYoouurr RReessuullttss!!

Have we helped?

Send your stories of success to Beth Starrett at crosstalk.publisher@hill.af.mil, or go
to www.stsc.hill.af.mil/crosstalk.We hope to feature some of the best stories in our

20th anniversary issue this August.



April 2008 www.stsc.hill.af.mil 23

In the past 10 years technology hasadvanced to the point whereby telephone
calls can be placed over Internet Protocol
(IP) packet networks, also know as VoIP.
One of the developments in this transition to
VoIP was to turn a computer into a VoIP
telephone by loading and running a VoIP
software application on the computer. This
VoIP application has emerged to be called a
Softphone. A key motivation for using the
Softphone is lower cost. This is due to the
fact that the Softphone is little more than
software, as compared to a traditional tele-
phone that is mostly or all hardware.
Softphones are also able to take advantage of
making calls over the Internet with little addi-
tional equipment. This can save on long dis-
tance charges, especially when talking to
another Softphone. Other advantages of the
Softphone include potential integration with
other applications, no space needed on the
desk for a telephone, and the ability to move
one’s phone number with a computer.

What Is a Softphone?
For this article, a Softphone is a VoIP client
application running on a computer. The
Softphone uses VoIP signaling to establish
calls, tear down calls, and take advantage of
call features such as call forwarding. The
Softphone also uses VoIP protocols to trans-
port audio traffic in IP packets to another
VoIP device. The Softphone is a client
device, as it is the user device for establishing
and tearing down calls. Other applications,
such as a call processor application running
on a computer, would not be considered a
Softphone. The Softphone is also a software
application loaded onto a computer and not
a hardware device running in a computer.

Softphones using the Microsoft operat-
ing system will generally use the Telephony
Application Programming Interface (TAPI),
which enables PCs to support telephone ser-
vices. TAPI provides support for such fea-
tures as the volume control, microphone
level, speakerphone, call control, etc. The
version in Extra Professional also provides
support for telephones connected to a PC via
a Universal Serial Bus port.

The most common motivation for using
a Softphone is avoiding long distance tele-

phone calls. People using them for business
can connect up from a hotel room and place
calls back to the office using a PC and avoid
using the hotel telephone or cell phone min-
utes. Home users are able to call and talk to
each other using PCs (sometimes with video
added) and avoid toll charges.

For the Department of Defense (DoD),
Softphones have potential applications with
tactical users. A user could gain telephone
service simply by connecting a PC to an IP
network and be able to place calls without a
local call processor set up. An added advan-
tage is that the user’s telephone number
would move with the PC, making the user
more reachable.

Operational Aspects of
Softphones
Operation of a Softphone is significantly dif-
ferent from the operation of a traditional
telephone. In order to place/receive calls at
any time, the user’s computer must be turned
on and the Softphone application running all
the time. Power must also be provided to the
computer at all times, and in the event power
is lost, the computer needs to be re-booted.
This can be avoided by providing power
backup to the computer in the form of an
uninterruptible power supply. The Softphone
will also only be as reliable as the computer.
If the computer is not stable and has to be
rebooted periodically, the reliability of the
Softphone will be affected.

Most traditional telephones have a hand-
set the user utilizes for talking and listening.
Most Softphone applications either use the
computer speakers and a microphone or use
a headset that includes both an earpiece and
microphone. Answering a call with a tradi-
tional telephone is done by picking up the
handset; whereas a Softphone is answered by
clicking on an answer call icon. Likewise, end-
ing a call with a traditional telephone is typi-
cally done by putting the handset into the cra-
dle; whereas a Softphone call is ended by
clicking on an icon to end the call.

Call features also work differently, and
this is one of the areas where Softphones
have an advantage over traditional telephone
sets. With a traditional telephone call features
are activated by selecting different combina-

tions of digits. For example, to have calls for-
warded a user might have to dial the digits
#75 and then the call transfer number. With
a Softphone, the user would select the call
transfer icon and then enter the call transfer
number. This eliminates the need to remem-
ber or look up various digit combinations to
enable call features. A number of vendor
implementations of Softphones allow the
graphical user interface (GUI) on the
Softphone to be used with a traditional tele-
phone. Each user has a computer with the
GUI loaded and a separate telephone. The
telephone is used as a traditional telephone,
but when the user wants to utilize a call fea-
ture, such as forwarding a call, it is done on
the GUI interface.

Softphones also have the advantage of
integrating well with other applications. For
example, the Microsoft Netmeeting applica-
tion can place calls, but it can also share out
an application between users. This would
enable two users to hold a conversation and
share a Word document they would both be
able to see and change. Other applications
that can be integrated with the Softphone are
Video Teleconferencing and whiteboards,
which allow both sides to write on a virtual
chalkboard and each can see what the other is
drawing. A new feature forthcoming to the
Web is a Softphone built into a Web site. A
user could read a Web page, have a question,
and click on a link that would provide audio
communication with someone at customer
service. This ability to integrate with applica-
tions also makes Softphones ideal for call
centers. A worker in a call center could have
a conversation with a customer while other
applications integrated with the Softphone
could bring up information on the customer.

Softphones have the ability to call other
Softphones on the Internet or place calls to
the Public Switched Telephone Network
(PSTN). Softphones can contact each other
directly over the Internet a couple of ways.
One way is to have the calling party dial the
IP address of the called party and establish a
connection. Another way is to register with a
service. The service provides either a tele-
phone number or name that is put into a reg-
istration server along with the user’s IP
address when the user registers. The calling

VoIP Softphones

Voice over Internet Protocol (VoIP) provides the user with an opportunity to combine the use of a telephone with a personal com-
puter (PC) into what is known as a Softphone. A Softphone allows users to place and receive calls using a PC. This article cov-
ers what a Softphone is and its issues, such as quality of service and security, which affect Softphones. The Technical Integration
Center (TIC) currently does not recommend significant use of Softphones in the Army due to security and certification issues.

David Premeaux
U.S. Army Information Systems Engineering Command 



party receives the called party’s IP address
using the registration service and establishes
the call. It should be pointed out that
Network Address Translation (NAT) can
cause problems for Softphones connecting
directly, and this will be covered later in more
detail.

Softphones can also be set up to make
calls to the PSTN. This is done as part of a
VoIP solution that includes a VoIP gateway
with connectivity to the PSTN. A popular
option in the commercial world is to pay for
a service that includes a gateway to the
PSTN. When the Softphone connects to the
PSTN, it will need to have either a real tele-
phone number or an extension number. The
service provides the means of registering the
telephone number with the user’s IP address.

When a Softphones is loaded onto a lap-
top computer it has the added advantage of
being mobile. It still has the ability to connect
peer-to-peer or to its PSTN service provider
when its location has changed. One interest-
ing feature of a mobile Softphone is that its
telephone number moves with it. For exam-
ple, if a user is connected with a Softphone
to the Internet in Dallas and has a Dallas
telephone number, and that user discon-
nects, goes to Denver and connects to the
Internet there, then the user’s telephone
number will appear to be the number from
Dallas. If someone calls the user’s Dallas
telephone number, the Softphone in Denver
will ring. This adds an element of conve-
nience to the Softphone, but also has an
effect on 911 service.

911 service is designed to map the user’s
telephone number to a location. When a user
dials 911, the operator is able to query a data-
base and determine location from the user’s
phone number. When a Softphone has a tele-
phone number assigned and stays in one
location, there is no issue with mapping this
number in the database to the location.
When the Softphone has a phone number
and changes location, this can pose a prob-
lem. If the user in the previous example were

to dial 911 while in Denver, the call would be
answered by an operator in Dallas, who
would assume that the user was in Dallas.
This could have a serious impact on emer-
gency services. A law was passed recently that
requires commercial providers of VoIP ser-
vice (including Softphones) to offer users
with a means of providing their location
information. This only applies to the PSTN
connection services and not to the peer-to-
peer services. The U.S. Army system has not
provided such a number-to-location
Softphone service, and it is recommended
that 911 calls be placed using Softphones
only as a last resort.

Technical Aspects of a
Softphone
This section will discuss how a Softphone
works and the protocols it uses for commu-
nication. Figure 1 shows a typical VoIP con-
figuration that includes a Softphone and a
PSTN gateway. For the peer-to-peer case, the
configuration consists only of two or more
Softphones connected to an IP network.

The Softphone uses the registration serv-
er to register its user name (typically a tele-
phone number or Universal Resource
Identifier to IP address mapping). Registering
will require some form of authentication,
such as a personal identification number or
Common Access Card. The IP connection
between the Softphone and the registration
server should be encrypted to protect
authentication information.

The call processor is used for establishing
calls, tearing down calls, routing calls, and
supporting call features. The Softphone
sends and receives call signaling messages
from the call processor. The Softphone uses
the call signaling messages to establish calls
to the other devices, including gateways, IP
telephones, and other Softphones.

Call signaling messages currently used
today include H.323 and Session Initiation
Protocol (SIP). The H.323 and SIP protocols

are designed to have the intelligence of the
VoIP system pushed to the edge, enabling
them to call each other without requiring a
call processor. The H.323 protocol was
developed by the International
Telecommunications Union and is the oldest
of the protocols and currently the most
heavily implemented [1]. The SIP protocol
was developed by the Internet Engineering
Task Force (IETF) and is considered lighter
from a code implementation and processor
perspective [2]. The SIP protocol is becom-
ing more popular and is expected by many to
replace H.323 in the future.

The actual audio traffic flows between
the Softphone and other devices in packets
that use the Real-time Transfer Protocol
(RTP). These packets contain the audio, as
well as timing information, sequence num-
bering, an identifier of the information
(compressed voice, video, etc.), and other
information. There is also a secure version of
RTP available, called Secure RTP, which pro-
vides encryption and authentication of the
voice traffic. The Real Time Control Protocol
supports RTP by conveying information
about the quality of the communication,
such as jitter and packet loss.

Quality of Service (QoS) is one of the
major issues for Softphones. When data traf-
fic experiences packet loss or significant
delay, the packets are present and the user
observes that the data is taking longer to send
or receive. For VoIP traffic, significant pack-
et loss, delay, or jitter (variations in delay) is
noticeable to the user. Resending lost packets
is not an option, as the conversation will have
moved on by the time they are retransmitted.
QoS solves these problems by enabling voice
packets to get queuing priority over data
packets in the IP network.

The Softphone sets QoS and tells the IP
network it needs priority in a couple of
ways. The first way is by setting the Diffserv
bits in the IP header to a higher priority.
Layer 3 Ethernet switches will look at these
bits and put these packets into a higher pri-
ority queue. Another way is to set the
Institute for Electrical and Electronics
Engineers (IEEE) 802.1P priority bits,
which are sent in the IEEE 802.1Q virtual
local area network (VLAN) tag. Layer 2
Ethernet switches look at these bits and use
them to prioritize the packets. The VLAN
tag also has a significant role in logically
separating the voice and data traffic, with
voice traffic receiving one tag value and
data traffic another. Both of these methods
of providing QoS work fine in DoD local
area networks (LANs), but they are current-
ly not supported in the Non-secure Internet
Protocol Router Network or in the com-
mercial Internet. This means Softphones
used in a remote fashion will not have any

24 CROSSTALK The Journal of Defense Software Engineering April 2008

IP NetworkPSTN
Trunk-side
Gateway

Line-side
Gateway

MCU

Call
Processor

Registration
Server

Analog
Telephones

IP TelephoneSoftPhone

Figure 1: Softphone in a Typical VoIP Configuration

Software Engineering Technology



VoIP Softphones

April 2008 www.stsc.hill.af.mil 25

QoS and its traffic will receive no priority.
A problem with QoS and Softphone is

the need for QoS within the computer.
Computers are generally not set up to pro-
vide priority on the internal buses and inter-
faces to certain applications. There is a means
to provide priority to an application within
Windows, but this tends to make the system
unstable. As a result of the lack of QoS, the
latency in the Softphone can be on the order
of hundreds of milliseconds, which are at a
level where the human ear can begin to detect
it and is outside the 60 milliseconds DoD
end-to-end VoIP limit.

Another technical issue for Softphones is
circumventing the NAT point. When all of
the VoIP devices are connected in the same
LAN this is not an issue. However, when the
calling party is on one side of a NAT point
and the called party is on the other, there is a
problem. The signaling message the calling
party sends to the called party contains the IP
address of the calling party. When packets
pass through the NAT point this IP address
is changed. When the called party attempts to
send packets to the IP address in the signal-
ing message, they are dropped (especially if
private addressing was used). One current
solution is to use the Simple Transversal of
User Datagram Protocol through NAT pro-
tocol. This protocol works by having the
Softphone communicate with a server out-
side the NAT point. The server is able to see
its real IP address and port number and com-
municate this back to the Softphone. The
Softphone then uses this IP address and port
number in its signaling messages.

The VoIP devices, including Softphones,
have a few tricks for reducing the amount of
bandwidth that they utilize. One of them is
to use voice compression algorithms.
Uncompressed voice (G.711) uses 64
Kilobits per second (Kbps) plus IP network
overhead. Other algorithms, such as G.729
(which uses eight Kbps), use less bandwidth.
The drawback is that voice quality may be
affected. Current DoD policy only allows
G.711, but this is expected to change in the
future, especially when VoIP goes to tactical
units. Another trick is to use Voice Activity
Detection (VAD). When a Softphone uses
VAD it only sends voice packets when the
user is talking. No packets are sent that con-
tain silence. In a typical conversation, only
one person is talking at a time so there is
audio in one direction and silence in the
other. When the silence packets are removed,
the amount of bandwidth utilized can be
reduced by 50 percent or more. One feature
to look for in a Softphone that uses VAD is
background noise insertion. Without this, the
telephone connection sound is so quiet dur-
ing periods of silence removal it appears the
connection is dead.

An issue for VoIP and Softphones in the
future will be Internet Protocol Version 6
(IPV6). Currently, all DoD IP networks are
expected to be capable of transitioning to
IPV6 by 2008. The computer, the Softphone
application, and the operating system will
need to support IPV6 for the Softphones to
use IPV6. For the Softphone to work with
the other VoIP devices, the call processor/
registration server, gateways, IP telephones,
etc. within its enclave will all need to be run-
ning IPV6. The IPV6 protocol may also have
an impact on the NAT problem. Due to the
large address space of IPV6, it is anticipated
that IPV6 will make NAT unnecessary.

Security Issues With Softphones
Security is currently the most difficult issue to
overcome with Softphones. The current
Defense Information Systems Agency
Security Technical Implementation Guide (STIG)
states, “The use of Softphones is highly dis-
couraged.” This is due to a number of items
related to the nature of Softphones [3]. This
section will go into these, along with the
STIG requirements, in more detail.

For VoIP implementations, the security
requirements require that the voice and data
traffic be separated into networks, either
physically or logically. Separate physical net-
works require separate networking devices,
such as switches and routers, for both data
and voice networks. Logical separation
means that the traffic is separated into logi-
cal networks, typically using VLANs. Data
devices are connected to data network
devices or ports in the data network VLAN
and likewise for the voice devices. The major
issue with Softphones is they tend to reside
on computers having applications requiring
access to both data and voice networks. For
example, the Softphone computer would
have the Softphone application, and then it
might have other applications, such as e-
mail, Web browsing, etc., that require access
to the data network. The following require-
ment in the STIG addresses this issue:

(VoIP0150: CAT I) The Information
Assurance Officer (IAO) require-
ment will ensure that if/when
approved Softphones are used in the
LAN, the following conditions are
met:
• The host computer contains a

Network Interface Card (NIC),
(commonly called a network
adapter) that is 802.1Q (VLAN
tagging) and 802.1P (priority
tagging) capable.

• The host computer, NIC, and
IP Softphone agent software is
configured to use separate
802.1Q VLAN tags for voice

and data.
• Alternatively, dual NICs may be

used where voice traffic is rout-
ed to one NIC and data traffic
is routed to the other. Each
NIC is connected to an access
switch port residing in the
appropriate VLAN.

• The host computer will be con-
nected to separate voice and
data VLANs that have been
created expressly for the
Softphone host(s). That is to
say that the LAN should have a
voice VLAN and a data VLAN
dedicated to hosts with IP
Softphone agents installed. [3]

A couple of issues occur with imple-
menting these requirements. The first is that
most computer NIC cards are not able to
support VLAN tagging. This would make
two NICs in the computer necessary. The
second is that some means need to be in
place to ensure that the voice traffic only
goes to the voice VLAN and the data traffic
only goes to the data VLAN. The major
security concern here is a hacker coming into
a computer on the data network and routing
over to the voice network.

The STIG also addresses the case where
the Softphone is used in a computer that is
accessing the network remotely. The STIG
states the following:

(VoIP0160: CAT I) The IAO will
ensure that if/when approved
Softphones are used in remote con-
nectivity situations, the following
conditions are met:
• The host computer connects to

the “home LAN” through a
Virtual Private Network (VPN)
connection.

• The VPN is terminated at the
enclave boundary in accordance
with the Enclave STIG.

• The voice and data traffic is rout-
ed appropriately to separate voice
and data VLANs in the “home
LAN.”

• The IP Softphone agent connects
to the Call Manager (call proces-
sor) on the “home LAN”
through the VPN using “home
LAN” IP addressing. [3]

Implementing this has the same issues as
connecting locally, namely keeping the voice
and data traffic separate. This is harder to do
remotely, as the remote computer would
need to tag the traffic appropriately and put it
into a VPN. There would also be QoS and
Joint Interoperability Test Center (JITC) cer-



tification issues with using Softphones
remotely (this is discussed in the next sec-
tion).

The STIG also provides the following
guidance when Softphones are used in a call
center:

(VoIP0165: CAT I) The IAO will
ensure that, if/when approved
Softphones are used in a call center
situation; the call center network is
configured as a separate enclave and
secured in accordance with all applic-
able STIGs.

This means that the call center VoIP traffic
must be separated, either physically or logi-
cally, from the rest of the IP traffic, in addi-
tion to complying with all of the other
STIGs.

Due to the security issues with
Softphones, the STIG also provides the fol-
lowing guidance to Designated Approving
Authorities (DAAs):

(VoIP0130: CAT I) The IAO will
ensure that written DAA approval is
obtained prior to the use of any IP
Softphone agent software. The IAO
will maintain documentation pertain-
ing to such approval for inspection by
auditors.

(VoIP0135: CAT I) The IAO will
ensure a local IP Softphone policy
exists and is being enforced that
addresses the following:
• Prohibits the installation and use

of IP Softphone agent software
on workstations (fixed or porta-
ble) intended for day-to-day use
in the user’s normal workspace.

• Prohibits the use of IP
Softphone agent software in the
user’s normal workspace, which
has been approved and installed
on a portable workstation for the
purpose of VoIP communica-
tions while traveling.

• Prohibits the installation and use
of IP Softphone agent software
clients that are independently
configured by end users for per-
sonal use or that is provided by
commercial Internet Telephony
Provider service providers.

• Requires prior justification and
DAA approval for the use of any
IP Softphone agent software.

• Requires that the justification and
DAA approval of IP Softphone
agent software use is reviewed
annually and approval renewed if
justified.

JITC Certification Issues
Public law and DoD policy requires that all
voice solutions attached to the Defense
Switched Network or PSTN obtain interop-
erability and become Information Assurance
certified. For VoIP, the voice solution
includes the call processors, registration
servers, IP telephones, gateways, and
Softphones. While a number of VoIP solu-
tions currently are certified, none of them
include a Softphone. This is partly due to dif-
ficulty in meeting the security and QoS
requirements and partly due to the question
of configuration change. The DISA/JITC
policy requires a VoIP solution to be recerti-
fied if its configuration changes from what
was certified. How this would affect
Softphones is not yet known. For example, if
a computer with a certified Softphone
were to change its audio card to a different
brand, would it need to be recertified?
There is currently no experience with this
issue.

There is currently a disconnect in
DoD policy regarding the use of
Softphones from a remote location, such
as a hotel room. The STIG allows it under
certain circumstances; whereas, the DISA
General Switching Center Requirement
(GSCR) (which contains the requirements
for interoperability certification) requires
end-to-end QoS and a certification of the
entire network the VoIP traffic will be tra-
versing [4].

One of the features that a Softphone
would need to support to obtain JITC cer-
tification for command and control (C2)
users is MultiLevel Precedence and
Preemption (MLPP). The MLPP allows a
caller with a higher precedence to preempt
a call of lower precedence. This is typical-
ly used when high priority calls need to get
through and lines are tied up.

Currently, all JITC certified solutions
consist of a LAN for the IP network. The
use of VoIP across the wide area network
and between services has not been worked
out. Currently, if there were a certified
configuration that included a Softphone,
the Softphone would need to go to a
PSTN gateway in order to place a call off
of an installation.

Conclusion 
While IP Softphones offer several advan-
tages, including mobility and a GUI for call
features, it may be a number of years before
they are common in DoD telephone systems,
with the possible exception of call centers.
This is due to a number of reasons.
Softphones are still awkward to use due to
the lack of a handset. Security and QoS
issues will make them difficult to implement

and secure. The lack of location awareness
when used as a mobile device makes them
risky for 911 use. Until JITC certifies a VoIP
solution that includes a Softphone, it will be
a violation of DoD policy to use one.

Recommendations 
The U.S. Army Information Systems
Engineering Command (USAISEC) Tech-
nology Integration Center (TIC) recom-
mends a continuing effort to examine
Softphones, especially in applications such as
call centers. Due to the technical complexities
of complying with security and performance
requirements, we do not recommend any sig-
nificant move to replace traditional tele-
phones or IP telephones with Softphones at
this time.u

References
1. International Telecommunications

Union. “H.323 Visual telephone systems
and equipment for local area networks
which provide a non-guaranteed quality
of service.” Nov. 1996.

2. IETF. Request for Comment 3261,
Session Initiation Protocol, June 2002.

3. DoD. Voice over IP STIG, V2R1, 29
Aug. 2005.

4. U.S. Department of Defense, Voice
Networks Generic Switching Center
Requirements (GSCR), Sept. 2004.

Disclaimers
1. Approved for public release; distribu-

tion is unlimited.
2. Disclaimer: The use of trade names in

this document does not constitute an
official endorsement or approval of
the use of such commercial hardware
or software. Do not cite this document
for advertisement.

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering April 2008

About the Author

David Premeaux is the
USAISEC Critical Skills
Expert for Networking
Technology for the TIC
at Fort Huachuca,
Arizona.

U.S. Army Information Systems 
Engineering Command
Technology Integration Center 
ATTN: AMSEL-IE-TI
Fort Huachuca, AZ 85613
Phone: (520) 533-2867
DSN: 821-2867
Fax: (520) 533-5676
E-mail: david.premeaux@

us.army.mil



April 2008 www.stsc.hill.af.mil 27

Predicting the future can be a rewarding
occupation, but it can also be a danger-

ous one. Historically, oracles were often
praised and lauded. But they were also
stoned to death if they were wrong – and
sometimes if they were right [1].

Software project estimation is a difficult
task for a simple reason: Software is not
really a product, it is a packaging of knowl-
edge and we cannot measure knowledge.
Software is best thought of as a knowledge
storage medium rather than a manufactured
product [2]. It is one of the five places we
can put knowledge once we have obtained
it, the other four being (in historical order):
DNA (Deoxyribonucleic Acid), brains,
hardware, and books. However, knowledge
in software has different characteristics than
knowledge stored in the other media [3].

Shooting Tanks
During World War II, the knowledge of
how to hit a tank with a bazooka was stored
in several places: It was stored in military
manuals (the book form) and in the ranging
and sighting device (the hardware form), but
it was stored mostly in the operator’s head
(the brain form) (see Figure 1). There are
some drawbacks with these media: The
manual only describes the knowledge – it does
not actually do anything; the sighting mech-
anism allows for storage and use of only a
few of the variables – mostly the distance-
to-target versus elevation relationship; and
the brain-resident knowledge has the dis-
tinct disadvantage that the soldier could be
shot at while attempting to hit the target. In
modern weapons systems, we have moved
almost all of this knowledge into the missile
in an active software-resident form.

Not Product Producing
If software is not a product, but is a medi-
um, then software development is not a
product-producing activity. In fact, it is best
thought of as a knowledge acquisition activity.
Most of the effort on a software project is
related to acquiring and validating knowl-
edge rather than creating a product. We
know what we are doing.

In an attempt to estimate projects, we
are trying to figure out how much knowl-
edge we do not have and how much time
and effort it will take to get it, plus a small
amount of time and effort to translate it
into the executable form once we have
obtained it. There are two challenges to this:
First, we are trying to measure something
we do not have which is always hard to do,
and second – and very importantly – we are
trying to measure knowledge, and knowl-
edge is simply not a measurable thing.

This leads us to some observations
about the essential nature of project estima-
tion:
• We cannot have an aaccccuurraattee estimate.

Apart from it being an oxymoron, there
is a simple reason why estimates cannot
be accurate – we simply do not have the
data or knowledge we need to be accu-
rate. The primary activity of a software
project is to get this knowledge. The
only point in time where we can reason-
ably assert we are accurate is at the end
of the project when we have acquired all
the knowledge and resolved all the
uncertainty.

It is possible to have a lucky esti-
mate. This happens when all the things
we did not or could not think of that
slowed the project down and all the
other things we did not think of that
speeded the project up happen to be
equal. Since there are more things that
will slow a project down than speed it up
– an application of the 2nd Law of
Thermodynamics to projects – we usu-
ally underestimate.

• The purpose of estimating is nnoott to
come up with an end-date. This is
usually what we are asked for when
someone wants an estimate, but it is not
a well-formed request. For most projects
there is a wide range of possible dates
when the project might finish (see
Figure 2, page 28). At the point in time
when we produce the estimate, we can
posit a trade-off of probability of success
for schedule and other resources. It is
easy to be 100 percent successful in pro-

jects – simply take a very long time and
use a very large number of very good
resources. In reality, the purpose of esti-
mation is not to deduce an end-date, it is
to derive the probability function that
describes the range of viable end-dates.
The project completion date and sched-
ule is not determined by estimation but
by the commitment process.

• Estimation is not commitment.
Making an estimate is not the same thing
as making a commitment. The job of
estimation is to identify the project’s
probability function. The job of the
commitment process is to select the
point along the probability function that
best manages the risk/return ratio.
Estimation is a technical activity; com-
mitment is a business activity, and they
operate on quite different data.

• The project estimate may not be
dependent on the delivered system
size. Despite the fact the every estima-
tion process used in software develop-
ment operates on the expected delivered
system size, the relationship can be quite
tenuous. The final system size may be an
indicator of the effort necessary to devel-
op the system. All else being equal, if
one system expects to have twice as
many (say) lines of code as another, that

Truth and Confidence:
Some of the Realities of Software Project Estimation

Software project estimation is not what we think it is because, to some extent, software is not what we think it is. This arti-
cle explores an alternative view of both software and project estimation and concludes that the process of estimation could be
much more valuable than we usually make it.

Phillip G. Armour
Senior Consultant Corvus International, Inc.

0%

100%

Effort/Time Curve

E
ff

o
rt

/C
o

st

Time

The Non-Linear Relationship of Effort and Time

Cumulative Probability Distribution Over Time

3
Months

Very
High
Risk

50%
Risk

Low
Risk

Very
Low
Risk

12
Month’s

Time

P
ro

b
ab

ili
ty

o
f 

S
u

cc
es

s

Figure 1: Bazooka Sighting Mechanism. Photo
property of <www.antiquefirearm.com> and
<www.andrax.com>. Used with permission

Open Forum



28 CROSSTALK The Journal of Defense Software Engineering April 2008

system will require proportionally more
time and effort. The trouble is, all else is
rarely equal. Viewed as a knowledge
acquisition activity, it is clear why pro-
ject effort may not have much to do
with the final size. If we use experi-
enced developers, they do not have to
acquire as much knowledge to produce
a system of a given size as less experi-
enced developers, but the system size
does not change. If we can reuse code,
either from a library, or embedded with-
in a language, the effort is less, since
some of the knowledge is already stored
in an accessible software medium.

Also, a system may be small in
terms of its line-of-code form, but it
may have very high knowledge density as is
true of real-time embedded systems –
the amount of knowledge needed to
make them work divided by the final
executable size is much higher than for
typical business systems. However,

while the knowledge density of an
information technology system might
be light, it may constantly change as the
market changes, meaning the knowl-
edge must be reacquired. So, the effort,
schedule, staff and cost may increase or
decrease without respect to system size
at all.

Almost all estimation processes
and tools provide a way of tuning the
final-size-driven estimate by adjusting
parameters which represent the systems’
attributes. We also trust these adjust-
ments will track to the effort necessary
to acquire the knowledge. The net result
of this tuning may entirely submerge
the effect of the system size.

• The effort-time relationship is not
linear. In fact, it is a high order recipro-
cal exponent [4]. It is common for orga-
nizations to believe that the process of
building software is, well, a building
process rather than a knowledge acquir-

ing process. Accordingly, they operate
on a set of assumptions based upon
manufacturing. This includes the rela-
tively linear relationship of effort (peo-
ple, machines) to time to deliver. In a
factory, if we double the number of
machines or run the machines twice as
long or twice as fast, we will approxi-
mately double the output. This math
simply does not apply to software
because it is not a manufacturing
process. It also partly explains why
adding people to a project – particularly
when it is already running late and the
schedule is already compressed – is not
an effective tactic (see Figure 3).

The Job of Estimation
The real job of estimation is not what it
seems. True, it does have a very important
role in determining the basic planning para-
meters of staff size, project duration, effort
and cost (and for some estimation models,
quality and defects). This is the classical tell
me when the project will be done role of estima-
tion.

The calibrations necessary to achieve a
useful, as opposed to accurate, answer from
an estimate are complex. They characterize
things: the system being built, the environ-
ment and people working on the project,
the management of that environment, the
tools and their effectiveness, the level of
documentation, and many other factors.
This is clearly seen in the operation of
many parametric estimation tools and
processes. For instance, the COCOMO II
model uses Scale Factors which determine
the size exponent. These include the fol-
lowing:
• System/project attributes: How new the

project is.
• Project/process attributes: Develop-

ment process flexibility and architecture
risk resolution.

• Team attributes: Team cohesion.
• Organizational attributes: Process matu-

rity [5].
COCOMO II further expands on its

characterization with a set of cost driver fac-
tors which reflect everything from the doc-
umentation level to the complexity of the sys-
tem being built.

Given a reasonably sound characteriza-
tion of an environment and system using
these types of factors – a very significant
task in itself – an estimation process
becomes an analogue of the projects being
run in that environment.

A Certain Uncertainty
Even if we think we are able to accurately size
a projected system, and we have good data
which we think characterizes the team, sys-

P
ro

ba
bi

lit
y 

of
 S

uc
ce

ss

Time or EffortHigh
Risk

50%
Risk

Low
Risk

Cumulative Probability Distribution

100%

90%

50%

10%

0%

Figure 2: Probability of Completion

0%

100%

Effort/Time Curve

E
ff

o
rt

/C
o

st

Time

The Non-Linear Relationship of Effort and Time

Cumulative Probability Distribution Over Time

3
Months

Very
High
Risk

50%
Risk

Low
Risk

Very
Low
Risk

12
Month’s

Time

P
ro

b
ab

ili
ty

o
f 

S
u

cc
es

s

Figure 3: High Order Reciprocal Power

Open Forum



Truth and Confidence: Some of the Realities of Software Project Estimation

April 2008 www.stsc.hill.af.mil 29

tem, and environment, we invariably find
that these are not certain. With each factor,
there comes some degree of variability: We
may have been this productive in the past,
but our productivity may be different now.
The project might be this big, but it could be
that big. It could be on the simple side of
complex, or the complex side of simple.
The new tools or language we are planning
to use might help a lot, a little, or they might
require more effort than they save. The only
way to be truly certain is to try it.

For each of the factors, we can postu-
late that they will likely operate over a range
of values. The product of all these vari-
ances determines the aggregate uncertainty
of the project and defines the slope of the
cumulative probability S-curve in Figure 2.
There are many challenges to calculating
these ranges, not the least being that the fac-
tors are not independent. Processing the
individual variances in a statistically legiti-
mate way allows us to calculate the total
uncertainty in the final project solution(s).

Estimation as Simulation
Here we get to the real purpose of estima-
tion. If we have reasonably characterized
the environment, if we have established
some operational variance for the size of
the system and its complexity, if we have
some idea of the ranges of difficulty in
obtaining the knowledge for the system,
and if we have some calibrated way of pro-
cessing this information, we could simulate
what might happen when we run the pro-
ject.

The concept of a statistical approach to
the management of software (especially
under the umbrella of Six Sigma) has its
detractors and they have some very good
points [6]. Developing software is not the
repetitive cranking out of identical units.
Indeed, doing something differently from
the last time is a bad thing from a manufac-
turing perspective, and most of the effort in
statistical process control is dedicated to
identifying, analyzing, and removing vari-
ance. But in software, variance is the reason
why we have a project at all – if we wanted
to do it just like the last time, we would sim-
ply use whatever we produced last time.
Again, software is not a product at all, it is a
medium in which we express, store, and
make active the knowledge that we gain
when we run a project. It is the knowledge
that is the thing, the software is simply
where we put it.

We do not have the resources to run the
same project multiple times to see how to
run it best. We only get to run a project
once. However, we could set up an estima-
tion system, with certified and controlled
inputs, that reasonably collects the likely

variances in the key characterizing factors of
product, personnel, technology, and envi-
ronment, and we could model the interac-
tion of these variables reasonably well.
Doing this, we can simulate the behavior of
our organization when it runs the project
under a given set of conditions. These
results can only be expressed in probabilis-
tic terms – since we have uncertain inputs,
we must have uncertain outputs. These out-
puts look a lot like statistical variance analy-
ses, even though we only have one project.
Many companies have and use various esti-
mation processes and tools, but few have
established estimation systems that control,
audit, and report project estimation and risk
data in the same way we control, audit, and
report on accounting data.

The financial management sections in
most companies have financial models that
they create, manage, and use. These models
incorporate key factors in the financial mar-
kets: inflation, growth in Gross National
Product, cost of capital, market sensitivity,
etc. Companies find these tools very valu-
able in helping to understand what kinds of
decisions might be more optimal than oth-
ers. Do these tools predict the future? No.
They cannot do that. But they can and do
help in the financial management of com-
panies; they are very valuable tools and sys-
tems. We could do the same thing for soft-
ware projects and estimation.

Comedian Woody Allen once remarked
“the only thing I cannot accurately predict
is the future…”. What an estimation simu-
lator could do is help identify more (or less)
optimal decisions about how we run our
projects, before we actually run them. We
often teach pilots on simulators. They do
not replace learning on the real thing, but
you can try things and test out behaviors on
a simulator that you would not want to try
on the real thing.

Fifteen Too Many, One Too Few
Several months ago, a client of mine was
considering implementing a large project in
15 equal increments spread over three years.
Using estimation tools to model the whole
system in a one-release, three-year delivery,
big bang approach we showed that this was
not a highly constrained system. However,
modeling the 15 increments in our estima-
tion system showed that the sum of the
parts was a lot bigger than the whole. We
could demonstrate that the overlapping
increments inserted a very high degree of
risk into the project that would only
become evident some way down the line.
This project would look pretty good for
about two years and then the wheel would
fall off. The big bang approach was much
less risky, but the customer would see no

value for three years. We modeled many
possible solutions including a four, unequal-
increment solution that we were able to
demonstrate would deliver the most func-
tionality to the customer at the earliest date,
with the lowest risk.

We could have learned that the 15 incre-
ment solution was a bad idea by trying it,
thereby costing the company several million
dollars. Or, we could learn the same lesson
by simulating what would happen and pre-
emptively picking a more reasonable course.

There is little doubt we need to improve
our performance in software project esti-
mation. The stakes are very high, but if we
align our expectations of estimation in
accordance with the reality of software
development and set up our organizations
to feed a software development business
simulation system, the rewards will be even
higher. We can do that.u

References
1. Wood, Michael. The Road to Delphi:

Scenes From the History of Oracles
Farrar. New York: Straus and Giroux,
2003.

2. Armour, P.G. “The Case for a New
Business Model.” Communications of
the ACM 43.8 (2000): 19-22.

3. Armour, P.G. “The Laws of Software
Process.” Boca Raton, FL: Auerbach
Publishers, 2003.

4. Putnam, Lawrence H., and Ware Myers.
Measures for Excellence. Englewood
Cliffs, NJ: Yourdon Press/Prentice Hall,
1992.

5. Boehm, Barry, W, et al. “Software Cost
Estimation with COCOMO II.” Upper
Saddle River, NJ: Prentice Hall, 2000.

6. Binder, Robert V. “Can a Manufacturing
Quality Model Work for Software?”
IEEE Software 14.5 (1997): 101-105.

About the Author

Phillip G. Armour is a
senior consultant for
Corvus International,
Inc. He is a contributing
editor at Communications of
the ACM and authored

the book “The Laws of Software
Process.”

Corvus International, Inc.
205 Briargate LN
Deer Park, IL 60010
Phone: (847) 438-1609
E-mail: armour@corvusintl.com



Departments

30 CROSSTALK The Journal of Defense Software Engineering April 2008



BACKTALK

Istarted this article on January 21st, the most depressing
day of the year [1]. Dr. Cliff Arnall gauged the third

Monday of January to be the most depressing day using a
formula based on weather, holiday debt, and failed resolu-
tions.

The exception to Arnall’s formula involves engineers with
children in kindergarten through eighth grade. The brightly
colored notice they receive each year for the school science
fair offers a respite from depression. The prospect to tinker
with science offsets the depressing effects of weather, debt,
and failed resolutions.

Let’s be honest: Most engi-
neers engage in little or no
engineering. They entered
engineering to design and
build but the dirty little secret
they don’t tell you in college is
that only a small percentage of
engineers actually design or
build. Most engineers docu-
ment, configure, test, meet,
review, manage, meet, inspect,
and meet again, but few
design. Those who do design
rarely get hands-on building
projects and hands-on soft-
ware is non-existent (note:
software builds and keyboard
strokes do not count).

When that science fair
paper hits home, the pent-up
frustration of deprived engi-
neers uncorks like a potato out
of a butane fueled polyvinyl
chloride pipe – another release
activity for hamstrung engi-
neers. Wheels start turning,
the engineering paper comes
out, and the Home Depot
account mounts.

Now, I’m a big fan of
parental involvement in school
activities, and I also support
alleviation of engineering
frustration, but I must caution
my fellow engineers: Do not
overdo it. Here are signs your
child may not be getting the
expected science project expe-
rience:
• The project takes more than 20 minutes to set up.
• Armed guards are required to protect the project.
• You ask the janitor for a high voltage outlet.
• Lloyds of London insures the project.
• You have to return the derrick crane by 4:00 p.m.
• Occupational Safety and Health Administration inspec-

tion is required.
• Your child answers all questions with, “Mom!”

Keep your project simple, involve your child, and, above

all, please leave the volcanoes, Mentos geysers, cake baking
instructions, and soda pop-soaked teeth at home.

My daughter, Hannah, was inspired by MythBusters to
determine the fastest way to cool a can of soda pop [2]. The
results, in the Cool It Pop graph, determined that a cooler
full of ice and salt water is your best bet – provided you
don’t have a fire extinguisher on hand.

Hannah noticed the refrigerator and freezer seemed very
slow to cool. I noticed Hannah left the door open during
measures, diminishing the refrigerator’s cooling ability. She

modified her measurement
by pulling the can out of the
refrigerator, closing the door
during measurement, and
then returning it. The results
were much better as dis-
played in the Keep the Door
Closed graph.
What can the science fair

teach us about tracking engi-
neering projects? First and
foremost, if you manage
engineers, give them at least
one task requiring designing,
tinkering, or building. This
act alone will save both yours
and the engineer’s sanity.
Second, resist the temptation

to over-measure. If measure-
ments become more important
than the project itself, your
measures will be sullied. Keep
the door closed and let your
engineers engineer.
Third, unbiased and pre-

cise measures are impossible.
Factor that into your analy-
sis, be tolerant on precision,
and vigilant on accuracy (see
[3] to discern the difference).
Finally, waste not, want not

– keep it simple. Not simple
minded; simple to imple-
ment, simple to measure,
simple to use, and simply
effective.

—Gary A. Petersen
Arrowpoint Solutions, Inc.

gpetersen@arrowpoint.us

References
1. Tanker, Bill. “The Most Dangerous Day of the Year.”

Time Magazine Jan. 2008.
2. Mythbusters. Discovery Channel <http://dsc.discovery.

com/fansites/mythbusters/mythbusters.html>.
3. Petersen, Gary A. “Ready, Fire, Aim.” CrossTalk Sept.

2006.

Science Fair, Farce, and Free-For-All

April 2008 www.stsc.hill.af.mil 31

  

 
 

 

Cool It, Pop!

T
e

m
p

e
ra

tu
re

 i
n

 D
e

g
re

e
s

 C
e

ls
iu

s

Time in Minutes

25.0

20.0

15.0

10.0

5.0

0.0
0.0 2.5 5.0 7.5 10.0 12.5 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0

Fridge

Freezer

Ice
Ice and
Water

Ice, Water,
and Salt

     

   

 
 

 

Keep the Door Closed

 
 

 
Te

m
p

e
ra

tu
re

 i
n

 D
e

g
re

e
s

 C
e

ls
iu

s

25.0

20.0

15.0

10.0

5.0

0.0

Time in Minutes

0.0 2.5 5.0 7.5 10.0 12.5 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0

Fridge

Fridge, door closed

Freezer

Freezer, door closed



CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk is
co-sponsored by the

following organizations:


	Front Cover
	Table of Contents

	From the Sponsor

	Project Tracking
	Software Tracking:
The Last Defense Against Failure
	Does Project Performance Stability Exist?
A Re-examination of CPI and Evaluation of SPI(t) Stability
	Schedule Adherence:
A Useful Measure for Project Management

	Software Engineering Technology
	A Review of Boundary Value Analysis Techniques
	VoIP Softphones

	Open Forum
	Truth and Confidence:
Some of the Realities of Software Project Estimation

	Coming Events

	Call for Articles

	CrossTalk Feedback

	SSTC 2008

	BackTalk

	Back Cover




